Crops ›› 2021, Vol. 37 ›› Issue (6): 134-138.doi: 10.16035/j.issn.1001-7283.2021.06.021

Previous Articles     Next Articles

Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato

Gao Jia1(), Wang Jiao2, Wang Song2, Liu Hongjian2, Kang Jia2, Shen Hong2, Wang Haili2, Ren Shaoyong2()   

  1. 1Huzhou Lingliang Ecological Agriculture Co. Ltd., Huzhou 313000, Zhejiang, China
    2Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, Zhejiang, China
  • Received:2020-12-31 Revised:2021-03-29 Online:2021-12-15 Published:2021-12-16
  • Contact: Ren Shaoyong E-mail:297149792@qq.com;498512574@qq.com

Abstract:

To study the effects of biochar-based fertilizer in potato production, random block design was used to analyse the effects of biochar-based fertilizer on soil urease activity and yield of ‘Zhongshu 3’ by applying 0 (CK0), 300 (T1), 600 (T2), 900 (T3) and 1200 (T4) kg/hm 2 of biochar-based fertilizer and the same amount of N, P, K fertilizer (CK1, CK2, CK3, CK4, respectively). The results showed that at seedling stage, soil urease activity was observed as CK4 > T4 > CK3 > T3 > CK2 > T2 > CK1 > T1 > CK0, at the tuber growth and harvest stage, soil urease activity was observed as T4 > CK4 > T3 > CK3 > T2 > CK2 > T1 > CK1 > CK0. Soil urease activities at different growth stages of potato observed as tuber growth period > mature harvest stage > seedling stage. Urease activities in different soil layers were observed as 0-10cm > 10-20cm > 20-40cm. Potato production performance was showed as T3 > T4 > CK3 > T2 > CK4 > T1 > CK2 > CK1 > CK0. The yield and soil urease activity were extremely significant at the tuber growth and harvest stages. In the experiment, the yield of potato of 900kg/ha biochar-based fertilizer treatment were the highest, and it was the suitable match for Huzhou areas in Zhejiang province.

Key words: Biochar-based fertilizer, Potato, Soil urease activity, Yield

Table 1

Fertilization amounts of all treatments kg/hm2"

处理
Treatment
施肥量Fertilization amounts
生物炭基肥
Biochar-based
fertilizer
尿素
Urea
过磷酸钙
Calcium
superphosphate
硫酸钾
Potassium
sulfate
CK0 0 0 0 0
CK1 0 64.8 150 103.8
CK2 0 129.6 300 207.6
CK3 0 194.4 450 311.6
CK4 0 259.2 600 415.5
T1 300 0 0 0
T2 600 0 0 0
T3 900 0 0 0
T4 1200 0 0 0

Fig.1

Effects of biochar-based fertilizer on soil urease activity of different soil layers at seedling stage of potato"

Fig.2

Effects of biochar-based fertilizer on soil urease activity of different soil layers at the tuber growth stage of potato"

Fig.3

Effects of biochar-based fertilizer on soil urease activity of different soil layers at harvest stage of potato"

Table 2

Effects of biochar-based fertilizer on yield and its factors of potato"

年份
Year
处理
Treatment
单株结薯数
Number of tuber
per plant
单薯重
Single tuber
weight (g)
大薯率
Rate of big
tuber (%)
产量
Yield (kg/hm2)
较CK0增产
Increased yield
compared with CK0 (%)
2019 CK0 3.75±0.18cA 101.22±7.68cB 36.11±2.70bB 19 851.56±844.86dD
CK1 3.83±0.26bcA 112.11±5.24bcAB 37.20±4.16bB 22 557.84±2412.68cdCD 13.63
CK2 3.86±0.26abcA 116.59±16.02abAB 38.15±3.47bB 23 546.65±3158.10cdBCD 18.61
CK3 3.99±0.36abcA 123.65±8.38abA 45.43±3.42aA 25 960.64±4853.48abcABC 30.77
CK4 3.88±0.45abcA 118.13±15.43abAB 41.11±7.74aA 24 040.02±4273.37cABCD 21.10
T1 3.96±0.50abcAB 119.85±11.87abAB 45.23±4.09bB 25 014.82±3536.46bcABCD 26.01
T2 3.93±0.26abcAB 129.50±7.58aA 45.46±5.70bB 26 754.76±2469.52abcABC 34.77
T3 4.35±0.36aA 130.09±6.39aA 50.20±3.12aA 29 719.37±2514.76aA 49.71
T4 4.31±0.31aA 125.64±11.13abA 47.56±3.19aA 28 464.25±3898.39abAB 43.39
2020 CK0 4.03±0.19aA 98.43±7.41dC 39.84±2.05bB 23 424.12±903.85bB
CK1 4.06±0.19aA 111.16±6.49cdBC 41.41±2.49bB 26 046.06±1451.15bAB 11.19
CK2 4.33±0.20aA 115.80±6.71cBC 43.60±2.38bB 28 270.24±1595.28abAB 20.69
CK3 4.62±0.36aA 138.99±5.52abA 57.93±3.93aA 30 986.49±1188.38abAB 32.28
CK4 4.38±0.25aA 131.81±7.49abAB 55.59±2.86aA 30 539.81±1231.56abAB 30.38
T1 4.30±0.33aA 113.39±4.20cBC 42.89±2.08bB 28 004.88±1602.29abAB 19.56
T2 4.36±0.22aA 125.45±1.61bcAB 44.08±2.16bB 28 345.14±1337.36abAB 21.01
T3 4.69±0.36aA 145.48±4.39aA 62.77±4.45aA 35 591.87±1460.50aA 51.95
T4 4.59±0.28aA 137.86±6.55abA 60.73±2.76aA 31 652.85±1785.39abAB 35.13

Table 3

Correlation of the soil urease activity and yield"

指标
Index
时期
Period
土层Soil layer (cm)
0~10 10~20 20~40
土壤脲酶
Soil urease
苗期 0.686* 0.788** 0.781**
块茎增长期 0.967** 0.954** 0.926**
成熟收获期 0.943** 0.972** 0.967**
[1] 万忠梅, 吴景贵. 土壤脲酶活性影响因子研究进展. 西北农林科技大学学报(自然科学版), 2005, 33(6):87-92.
[2] 刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应. 应用生态学报, 2009, 20(4):977-982.
[3] 王春芳, 张文豪, 张琨琨, 等. 生物质炭在农业生产中应用的研究进展. 现代农业科技, 2018(13):174-175.
[4] Goldberg E D. Black carbon in the environment:properties and distribution. New York:John Wiley, 1985.
[5] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos; I. Soil physical properties,leaf SPAD and grain yield. Field Crops Research, 2009, 111:81-84.
doi: 10.1016/j.fcr.2008.10.008
[6] Lehmann J, Rondon M A. Bio-char soil management on highly weathered soils in the humid tropics. CRC Press Boca Raton, 2006:518-530.
[7] Patryk O, Izabela. Effect of pesticides on microorganisms,enzymatic activity and plant in biochar-amended soil. Geoderma, 2014, 214:10-18.
[8] 许云翔, 何莉莉, 刘玉学, 等. 施用生物炭6年后对稻田土壤酶活性及肥力的影响. 应用生态学报, 2019, 30(4):1110-1118.
[9] 侯建伟, 邢存芳, 邓晓梅, 等. 花椒林下土壤微生物数量和酶活性对生物质炭的响应. 西北农林科技大学学报(自然科学版), 2020, 48(4):89-96.
[10] 赵军. 生物质炭基氮肥对土壤微生物量碳氮、土壤酶及作物产量的影响研究. 杨凌:西北农林科技大学, 2016.
[11] 关松荫. 土壤脲酶及其研究法. 北京: 农业出版社, 1986.
[12] 赵兰波, 姜岩. 土壤磷酸酶测定方法探讨. 土壤通报, 1986, 17(3):138-141.
[13] 王俊华, 尹睿, 张华勇, 等. 长期定位施肥对农田土壤脲酶活性及其相关因素的影响. 生态环境, 2007, 16(1):191-196.
[14] 李东坡, 武志杰, 陈利军, 等. 长期培肥黑土脲酶活性动态变化及其影响因素. 应用生态学报, 2003, 14(12):2208-2212.
[15] 施六八. 炭基复合肥在大棚萝卜上的应用效果试验研究. 安徽农学通报, 2013(9):69-71.
[16] 刘小虎, 赖鸿雁, 韩晓日, 等. 炭基缓释花生专用肥对花生产量和土壤养分的影响. 土壤通报, 2013, 44(3):698-702.
[1] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[2] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[3] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[4] Liu Yajun, Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo, Chu Fengli. Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field [J]. Crops, 2021, 37(6): 122-128.
[5] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[6] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[7] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[8] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[9] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[10] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[11] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[12] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[13] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[14] Luo Lei, Li Yajie, Yao Yanhong, Li Fengxian, Fan Yi, Dong Aiyun, Liu Huixia, Niu Caiping, Li Deming. Effects of Planting Small Whole Potatoes with Different Specifications and Seed Dressing on the Growth and Yield of Potatoes in Continuous Cropping Land [J]. Crops, 2021, 37(6): 211-216.
[15] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!