Crops ›› 2021, Vol. 37 ›› Issue (6): 139-144.doi: 10.16035/j.issn.1001-7283.2021.06.022

Previous Articles     Next Articles

Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area

Li Xinhao1(), Li Jun1, Wan Lin1, Liu Lixin1, Liu Junquan2, Ma Ni1()   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Cultivation and Physiology of the Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Dafasi Agricultural Technology Service Center, Wuxue 435400, Hubei, China
  • Received:2021-01-04 Revised:2021-09-15 Online:2021-12-15 Published:2021-12-16
  • Contact: Ma Ni E-mail:lxhao16@163.com;mani@caas.cn

Abstract:

Understanding the relationship between the root system and rapeseed yield, soil physical properties are the key for optimizing rapeseed cultivation and management under the condition of no-tillage in hilly area. A field experiment was conducted to study the effects of three treatments, control (CT, conventional tillage and no straw returning to field), no-tillage and no straw returning to field (NT), and no-tillage and straw mulching return to field (NTR), on rapeseed yield. Compared with CT, the NT treatment increased the soil bulk density and soil compaction, decreased the saturation moisture capacity and total porosity, and led to restrained root growth. The rapeseed yield under NT treatment was 17.04% higher and under NTR was 5.83% lower than that of CT treatment. Except for the root crown diameter, the overall root indexes showed a trend of NT > NTR > CT during seedling stage of rapeseed. While the root volume, total root length, total root surface area, root crown diameter and dry matter weight showed CT > NT > NTR at the silique stage. Compared with CT treatment, NT treatment could effectively reduce the damage of drought stress to rape seedling root system and ensure the harvest yield of rapeseed. However, NTR treatment had significantly lower branch numbers per square meter, siliques per unit area and root indexes. Meanwhile, these were also the reason for yield decrease. Therefore, the results indicated that the suitable tillage method could reduce the damage caused by drought and increase rapeseed yield.

Key words: Rapeseed, Hilly area, No-tillage, Drilling, Agronomic trait, Root system, Yield

Fig.1

Monthly average temperature and precipitation of the rice and rape planting season in 2019-2020"

Fig.2

A diagram of the plant method"

Table 1

Effects of different tillage treatments on soil physical properties"

土层深度
Soil depth
(cm)
处理
Treatment
土壤容重
Bulk density
(g/cm3)
饱和含水量
Saturation moisture
capacity (%)
总孔隙度
Total porosity
(%)
毛管最大持水量
Capillary moisture
capacity (%)
毛管孔隙度
Capillary
porosity (%)
非毛管孔隙度
Non-capillary
porosity (%)
0~10 CT 1.46a 30.04a 43.60a 28.96a 42.03a 1.57a
NT 1.52a 27.77a 42.25a 26.60b 40.47a 1.78a
NTR 1.47a 28.60a 43.29a 28.08ab 41.56a 1.73a
平均Mean 1.48 28.80 43.05 27.88 41.35 1.69
10~20 CT 1.45a 29.28ab 42.48a 27.94a 40.52a 1.95a
NT 1.58a 25.44b 40.10a 24.54b 38.70a 1.41a
NTR 1.47a 32.70a 43.82a 30.46a 42.48a 2.33a
平均Mean 1.50 29.14 42.13 27.65 40.57 1.90
0~20 CT 1.45a 29.66a 43.04ab 28.45a 41.28ab 1.76a
NT 1.55a 26.60b 41.18b 25.57b 39.58b 1.60a
NTR 1.47a 30.65a 43.55a 29.27a 42.02a 2.03a

Fig.3

Changes of soil moisture, temperature and ECP under different treatments"

Fig.4

Changes of soil compaction under different treatments before sowing and after harvesting"

Table 2

Effects of different tillage treatments on yield and yield components of rapeseed"

品种
Variety
处理
Treatment
每平方米角果数
Siliques per square metre
每角果粒数
Seeds per silique
千粒重
1000-seed weight(g)
籽粒重
Seed weight(g/m2)
产量
Yield
(kg/hm2)
主枝(M) 分枝(B) 主枝(M) 分枝(B) 主枝(M) 分枝(B) 主枝(M) 分枝(B)
大地199 CT 1559a 3238a 18.11a 13.08a 4.676a 4.186a 88.68a 216.6a 2242a
Dadi 199 NT 1560a 2554ab 19.47a 12.27a 4.373a 4.193a 85.91a 164.1ab 2627a
NTR 1239b 1787b 18.30a 12.57a 4.910a 4.496a 66.24b 112.3b 2197a
阳光2009 CT 1404a 4614a 15.70a 14.17a 5.316a 4.506a 68.89a 239.8ab 2388ab
Yangguang 2009 NT 1429a 5240a 14.76a 13.54a 5.086a 4.296a 64.71a 293.6a 2792a
NTR 1148b 3057b 18.12a 14.86a 5.006a 4.346a 65.46a 170.1b 2163b

Table 3

Effects of different tillage treatments on agronomic traits performance of rapeseed"

品种
Variety
处理
Treatment
每平方米分枝数
Branches per
square meter
分枝长
Length of branch
raceme (cm)
主枝长
Length of main
raceme (cm)
株高
Plant
height (cm)
角果皮干重
Shell dry
mass (g/m2)
干重Dry mass (g/m2) 总生物量
Total dry
mass (g/m2)

Root

Stem
地上部
Aboveground
大地199 CT 145.9a 38.25a 52.21a 154.5a 314.7a 126.40a 372.8a 687.6a 814.0a
Dadi199 NT 124.6ab 34.58ab 54.16a 165.2a 265.3ab 97.58b 316.6a 581.9ab 679.4ab
NTR 106.9b 27.80b 51.87a 161.2a 211.5b 87.50b 271.1a 482.7b 570.2b
阳光2009 CT 151.5a 47.00a 45.79a 166.4a 437.5a 127.20a 423.0ab 860.5a 987.8a
Yangguang 2009 NT 151.2a 50.62a 46.62a 168.2a 345.9ab 128.40a 467.4a 813.4ab 941.8a
NTR 119.6b 38.44b 44.57a 158.7a 276.2b 93.48b 286.2b 562.4b 655.9b

Table 4

Effects of different tillage treatments on root growth performance of single rapeseed at seedling and silique stages"

生育期
Stage
品种
Variety
处理
Treatment
根体积
Root volume (cm3)
总根长
Root length (cm)
总根表面积
Root surface area (cm2)
根颈粗
Root crown diameter (mm)
根干重
Dry weight (g)
苗期 大地199 CT 0.13b 171.00b 16.79b 3.40ab 0.049b
Seedling NT 0.27a 265.76a 29.95a 3.66a 0.072a
NTR 0.20ab 223.50ab 23.75ab 2.59b 0.063ab
阳光2009 CT 0.10a 152.35a 13.75b 2.80a 0.045a
NT 0.18a 206.65a 21.51a 3.53a 0.060a
NTR 0.11a 157.33a 14.54b 2.36a 0.048a
角果期 大地199 CT 31.23a 449.10a 211.40a 20.20a 6.030a
Silique NT 23.67b 285.90b 133.20b 18.43b 4.860b
NTR 19.67b 261.50b 130.30b 16.07b 3.860b
阳光2009 CT 30.43a 338.80a 163.00a 20.80a 5.060a
NT 27.80b 349.50a 138.10b 18.53b 5.530a
NTR 18.77b 287.80a 111.00b 17.33b 4.010b
[1] 程沅孜, 李谷成, 李欠男. 中国油菜生产空间布局演变及其影响因素分析. 湖南农业大学学报(社会科学版), 2016, 17(2):9-15.
[2] 姜心禄, 易靖, 郑家国, 等. 西南丘陵山地油菜机播机收的试验研究. 西南农业学报, 2013, 26(4):1654-1659.
[3] 刘成, 黄凤洪, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41(4):485-489.
[4] 祝华军, 田志宏, 楼江. 影响农户油菜种植面积的因素研究——来自湖北省1189个农户的实证. 中国农机化学报, 2019, 40(12):217-223,230.
[5] 李心昊, 李俊, 刘丽欣, 等. 直播油菜产量、产量构成及品质性状的综合分析. 中国油料作物学报, 2021, 43(2):251-259.
[6] 王翠翠, 周广生, 胡立勇, 等. 湖北双季稻区免耕直播油菜生长及产量形成. 作物学报, 2011, 37(4):694-702.
[7] 郑伟, 叶川, 肖国滨, 等. 油-稻共生期对谷林套播油菜苗期性状及产量形成的影响. 中国农业科学, 2015, 48(21):4254-4263.
[8] 罗玉琼, 严博, 吴可, 等. 免耕和稻草还田对稻田土壤肥力和水稻产量的影响. 作物杂志, 2020(5):133-139.
[9] 梁金凤, 齐庆振, 贾小红, 等. 不同耕作方式对土壤性质与玉米生长的影响研究. 生态环境学报, 2010, 19(4):945-950.
[10] 苏伟, 鲁剑巍, 周广生, 等. 免耕及直播密度对油菜生长、养分吸收和产量的影响. 中国农业科学, 2011, 44(7):1519-1526.
[11] 马霓, 张春雷, 马皓, 等. 免耕栽培措施对稻田油菜生长及产量的影响. 作物杂志, 2009(5):55-59.
[12] 杜兴彬, 罗利军, 陈晨, 等. 稻―油轮作连续免耕直播对作物产量及土壤理化性状的影响. 中国水稻科学, 2013, 27(6):617-623.
[13] Wang X, Wu H, Dai K, et al. Tillage and crop residue effects on rainfed wheat and maize production in northern China. Field Crops Research, 2012, 132(3):106-116.
doi: 10.1016/j.fcr.2011.09.012
[14] 马霓, 张春雷, 李俊, 等. 播期和密度对免耕直播油菜生长及产量的影响. 湖北农业科学, 2010, 49(7):1580-1583.
[15] 韩自行, 吴江生, 傅廷栋, 等. 氮肥运筹对稻茬免耕油菜农艺性状及产量的影响. 作物学报, 2012, 37(12):2261-2268.
[16] 王翠翠, 周广生, 傅廷栋, 等. 油菜苗期性状与其稻茬免耕直播产量损失的关系. 作物学报, 2011, 37(3):545-551.
[17] 李小勇, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44(2):278-287.
[18] 陈少勇, 魏桂英, 郭俊瑞, 等. 中国西南和华南地区秋季干旱变化规律. 干旱气象, 2014, 32(6):894-901.
[19] 袁金展, 马霓, 张春雷, 等. 移栽与直播对油菜根系建成及籽粒产量的影响. 中国油料作物学报, 2014, 36(2):189-197.
[20] 何露露, 强薇, 张燕, 等. 川西亚高山针叶林次生演替对土壤持水量的影响. 应用与环境生物学报, 2021, 27(3):639-647.
[21] 王维钰, 乔博, Akhtar K, 等. 免耕条件下秸秆还田对冬小麦-夏玉米轮作系统土壤呼吸及土壤水热状况的影响. 中国农业科学, 2016, 49(11):2136-2152.
[22] 禄兴丽, 廖允成. 保护性耕作对旱作夏玉米苗期土壤水热及作物产量的影响. 土壤通报, 2014, 45(1):147-150.
[23] Wang X B, Cai D X, Hoogmoed W B, et al. Developments in conservation tillage in rainfed regions of North China. Soil and Tillage Research, 2007, 93(2):239-250.
doi: 10.1016/j.still.2006.05.005
[24] 宋振伟, 郭金瑞, 邓艾兴, 等. 耕作方式对东北春玉米农田土壤水热特征的影响. 农业工程学报, 2012, 28(16):108-114.
[25] 蒲境, 史东梅, 娄义宝, 等. 不同耕作深度对红壤坡耕地耕层土壤特性的影响. 水土保持学报, 2019, 33(5):8-14.
[26] Hu H N, Lu C Y, Wang Q J, et al. Influences of wide-narrow seeding on soil properties and winter wheat yields under conservation tillage in North China Plain. International Journal of Agricultural and Biological Engineering, 2018, 11(4):74-80.
doi: 10.25165/j.ijabe.20181101.2713
[27] 龚冬琴, 吕军. 连续免耕对不同质地稻田土壤理化性质的影响. 生态学报, 2014, 34(2):239-246.
[28] Lo Gullo M A, Nardini A, Salleo S, et al. Changes in root hydraulic conductance(KR) of Olea oleaster seedlings following drought stress and irrigation. New Phytologist, 1998, 140(1):25-31.
doi: 10.1046/j.1469-8137.1998.00258.x
[29] 米超, 赵艳宁, 刘自刚, 等. PEG模拟水分胁迫下白菜型冬油菜芽期根系特征及抗旱性研究. 干旱地区农业研究, 2017, 35(5):229-235.
[30] 胡承伟, 张学昆, 邹锡玲, 等. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35(1):48-53.
[31] 严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015, 21(1):23-35.
[32] 王健波, 严昌荣, 刘恩科, 等. 长期免耕覆盖对旱地冬小麦旗叶光合特性及干物质积累与转运的影响. 植物营养与肥料学报, 2015(2):296-305.
[33] 郑伟, 肖国滨, 陈明, 等. 水稻套播油菜研究进展、问题及对策. 湖北农业科学, 2017, 56(8):1434-1437.
[1] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[2] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[3] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[4] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[5] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[6] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[7] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[8] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[9] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[10] Gu Yuchao, Yang Yide, Yan Min, Liu Yong, Yang Jian, Xiang Jinyou, Luo Zhushi, Li Linqiu, Jing Yanqiu, Yang Yang. Effects of GA3 and 6-BA on Agronomic Traits and Chemical Components of Flue Cured Tobacco after Topping [J]. Crops, 2021, 37(6): 171-176.
[11] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[12] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[13] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[14] Luo Lei, Li Yajie, Yao Yanhong, Li Fengxian, Fan Yi, Dong Aiyun, Liu Huixia, Niu Caiping, Li Deming. Effects of Planting Small Whole Potatoes with Different Specifications and Seed Dressing on the Growth and Yield of Potatoes in Continuous Cropping Land [J]. Crops, 2021, 37(6): 211-216.
[15] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!