Crops ›› 2021, Vol. 37 ›› Issue (6): 88-94.doi: 10.16035/j.issn.1001-7283.2021.06.014

Previous Articles     Next Articles

Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean

Chen Zhongcheng1,2(), Jin Xijun1,2, Li He1, Zhou Weixin1, Qiang Binbin1, Liu Jia1, Zhang Yuxian1,2()   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2National Coarse Cereals Engineering Technology Research Center, Daqing 163319, Heilongjiang, China
  • Received:2021-01-29 Revised:2021-03-30 Online:2021-12-15 Published:2021-12-16
  • Contact: Zhang Yuxian E-mail:784533319@qq.com;zyx_lxy@126.com

Abstract:

In order to study the effects of exogenous melatonin on the growth, photosynthetic fluorescence characteristics and yield components of adzuki bean Zhenzhuhong, the main adzuki bean variety in Heilongjiang province, was used in pot culture, different concentrations of melatonin (0, 50, 100, 200μmol/L) were sprayed at seedling stage, flowering and podding stage and seed filling stage. The results showed that, compared with the control, the treatments of 50, 100 and 200μmol/L melatonin increased plant height, leaf area, dry matter accumulation, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), maximum photochemical efficiency (Fv/Fm) and potential photochemical activity (Fv/Fo), and the treatment of 100μmol/L melatonin had the greatest improvement. The grain weight per plant of adzuki bean were 5.53, 6.13 and 5.90g at seedling stage, flowering and pod stage and seed filling stage, respectively, which increased by 6.3%, 12.1% and 9.5% compared with CK. In conclusion, spraying 100μmol/L melatonin at flowering and pod stage of adzuki bean had the most significant increase effect on yield.

Key words: Adzuki bean, Melatonin, Dry matter accumulation, Photosynthetic characteristics, Yield

Table 1

Effects of spraying melatonin with different concentrations at different growth stages on morphological indexes of adzuki bean"

时期
Period
褪黑素浓度
Melatonin concentration (μmol/L)
株高
Plant height (cm)
茎粗
Stem diameter (mm)
叶面积
Leaf area (mm2)
苗期Seedling stage 0 (CK) 15.90±0.92c 3.41±0.06ab 6629.4±2010.1a
50 21.33±0.51b 3.27±0.05ab 7649.5±944.1a
100 23.73±0.77a 3.74±0.07a 7937.2±826.0a
200 17.08±0.78c 2.98±0.10b 7466.9±1219.4a
花荚期Flowering and pod stage 0 (CK) 16.72±0.74a 3.19±0.22a 20357.7±1986.6b
50 16.58±0.46a 2.94±0.14a 23280.6±2267.9ab
100 18.67±1.23a 3.56±0.54a 31500.4±5155.7a
200 17.03±0.76a 2.61±0.14a 15567.3±2205.1b
鼓粒期Seed filling stage 0 (CK) 15.10±1.36a 3.24±0.16a 20079.7±3661.2c
50 16.26±1.03a 2.87±0.14a 30989.3±3686.5ab
100 19.12±1.78a 3.70±0.49a 33633.0±1700.5a
200 15.60±0.48a 3.39±0.13a 22887.7±1090.7bc

Table 2

Effects of spraying melatonin with different concentrations at different growth stages on matter accumulation of adzuki bean"

时期
Period
褪黑素浓度
Melatonin concentration
(μmol/L)
地上鲜重
Aboveground
fresh weight (g)
地下鲜重
Underground
fresh weight (g)
地下部干重
Underground
dry weight (g)
地上部干重
Aboveground
dry weight (g)
根冠比
Root shoot
ratio
苗期Seedling stage 0 (CK) 3.25±0.19a 1.51±0.46a 0.31±0.03a 0.59±0.08b 0.50±0.04a
50 3.21±0.19a 1.96±0.41a 0.35±0.07a 0.76±0.04ab 0.53±0.03a
100 3.54±0.44a 1.26±0.21a 0.47±0.06a 0.89±0.06a 0.56±0.04a
200 3.76±0.38a 1.86±0.17a 0.42±0.05a 0.74±0.05b 0.49±0.03a
花荚期Flowering and pod stage 0 (CK) 8.14±0.62c 5.80±0.61b 0.77±0.09a 1.44±0.09bc 0.54±0.03a
50 10.05±0.10b 6.18±0.53ab 1.00±0.11a 1.68±0.05b 0.60±0.02a
100 13.86±0.90a 7.95±0.89a 1.23±0.30a 2.04±0.11a 0.66±0.04a
200 6.73±0.18c 4.35±0.39b 0.75±0.02a 1.30±0.11c 0.59±0.06a
鼓粒期Seed filling stage 0 (CK) 8.05±0.27b 4.48±0.81bc 0.85±0.11ab 1.57±0.14b 0.55±0.05ab
50 11.38±0.76a 6.31±0.56b 1.03±0.16ab 1.86±0.10ab 0.66±0.04ab
100 12.03±0.46a 8.38±0.47a 1.19±0.02a 2.08±0.16a 0.69±0.05a
200 7.79±0.53a 4.18±0.40c 0.71±0.04b 1.60±0.17ab 0.51±0.06b

Table 3

Effects of spraying melatonin with different concentrations at different growth stages on photosynthetic pigment contents of adzuki bean"

时期
Period
褪黑素浓度
Melatonin concentration (μmol/L)
叶绿素a
Chl a (mg/g)
叶绿素b
Chl b (mg/g)
类胡萝卜素
Carotenoid (mg/g)
总叶绿素a+b
Chl (a+b) (mg/g)
叶绿素比值
Chl (a/b)
苗期Seedling stage 0 (CK) 1.25±0.064bc 0.40±0.018ab 0.30±0.025b 1.65±0.080ab 3.14±0.09b
50 1.36±0.089ab 0.45±0.027a 0.29±0.019bc 1.81±0.117a 3.02±0.02b
100 1.46±0.034a 0.44±0.012a 0.40±0.014a 1.89±0.046a 3.35±0.01a
200 1.07±0.018ab 0.36±0.010b 0.24±0.003c 1.43±0.029ab 3.00±0.04ab
花荚期Flowering and pod stage 0 (CK) 1.82±0.046b 0.52±0.019c 0.45±0.008b 2.35±0.065b 3.47±0.04a
50 2.52±0.126a 0.73±0.044b 0.59±0.023a 3.25±0.169a 3.45±0.06a
100 2.69±0.213a 0.88±0.073a 0.55±0.004a 3.57±0.285a 3.04±0.04b
200 1.83±0.091b 0.63±0.023bc 0.28±0.018c 2.46±0.114b 2.91±0.05b
鼓粒期Seed filling stage 0 (CK) 0.99±0.078ab 0.29±0.024ab 0.43±0.035a 1.28±0.101ab 3.49±0.03a
50 0.98±0.021ab 0.33±0.008ab 0.38±0.011ab 1.30±0.030ab 2.95±0.01b
100 1.19±0.197a 0.44±0.083a 0.44±0.065a 1.63±0.281a 2.77±0.07c
200 0.69±0.093b 0.23±0.028b 0.29±0.029b 0.92±0.121b 2.95±0.06b

Fig.1

Effects of spraying melatonin with different concentrations at different growth stages on photosynthetic characteristics of adzuki bean Different lowercase letters indicate significant difference at 0.05 level. The same below"

Fig.2

Effects of spraying melatonin with different concentrations at different growth stages on chlorophyll fluorescence parameters of adzuki bean"

Table 4

Effects of spraying melatonin with different concentrations at different growth stages on yield components of adzuki bean"

时期
Period
褪黑素浓度
Melatonin concentration (μmol/L)
单株荚数
Pods per plant
单株粒数
Seeds per pod
百粒重
100-grain weight (g)
单株粒重
Grain weight per plant (g)
苗期Seedling stage 0 (CK) 11.50±0.65a 55.00±4.93a 9.07±0.21a 5.20±0.46a
50 12.00±0.71a 55.00±3.56a 9.08±0.27a 5.37±0.31a
100 13.25±0.48a 55.75±0.95a 9.30±0.67a 5.53±0.08a
200 13.00±0.71a 55.75±2.63a 9.13±0.34a 5.36±0.18a
花荚期Flowering and pod stage 0 (CK) 12.50±0.65a 57.25±2.14a 9.02±0.28a 5.47±0.06b
50 13.75±0.63a 59.25±2.06a 9.44±0.63a 5.76±0.11ab
100 14.25±0.75a 61.00±1.35a 9.82±0.19a 6.13±0.09a
200 12.00±0.71a 54.75±2.50a 8.74±0.78a 5.45±0.22b
鼓粒期Seed filling stage 0 (CK) 12.25±0.25a 57.00±2.48a 8.94±0.45b 5.39±0.20ab
50 12.50±0.87a 58.25±2.06a 10.05±0.26a 5.65±0.24a
100 13.25±0.48a 60.00±1.83a 10.90±0.17a 5.90±0.05a
200 12.75±0.63a 53.50±2.25b 8.92±0.14b 5.00±0.17b
[1] 唐偲雨, 张玲, 唐进, 等. 几种红小豆理化特性及淀粉性质研究. 中国农学通报, 2018, 34(6):143-148.
[2] 杨小雪, 王丽丽, 丁岚, 等. 加工方式对红小豆粉理化性质及预估血糖生成指数的影响. 中国粮油学报, 2021, 36(1):33-38.
[3] 王慧, 李鑫, 陈梦妮. 水氮配合对不同耐旱性红小豆根际土壤酶活性的影响. 山西农业科学, 2020, 48(11):1812-1815,1819.
[4] 吴琼, 丁凯鑫, 余明龙, 等. 新型植物生长调节剂B2对玉米光合荧光特性及产量的影响. 作物杂志, 2020(5):174-181.
[5] Erland L A, Murch S J, Reiter R J, et al. A new balancing act:the many roles of melatonin and serotonin in plant growth and development. Plant Signaling and Behavior, 2015, 10(11):e1096469.
doi: 10.1080/15592324.2015.1096469
[6] Hardeland R. Melatonin in plants and other phototrophs:advances and gaps concerning the diversity of functions. Journal of Experimental Botany, 2015, 66:627-646.
doi: 10.1093/jxb/eru386 pmid: 25240067
[7] Arnao M B, Hernández-Ruiz J. Functions of melatonin in plants:a review. Journal of Pineal Research, 2015, 59:133-150.
doi: 10.1111/jpi.12253
[8] Reiter R, Tan D X, Zhou Z, et al. Phytomelatonin:assisting plants to survive and thrive. Molecules, 2015, 20(4):7396-7437.
doi: 10.3390/molecules20047396
[9] 庄维兵, 刘天宇, 束小春, 等. 褪黑素在植物生长发育过程中与植物激素的关系. 安徽农业科学, 2018, 46(31):12-16.
[10] Murch S J, Campbell S S B, Saxena P K. The role of serotonin and melatonin in plant morphogenesis:regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John's wort (Hypericum perforatum L.). In Vitro Cellular and Developmental Biology-Plant, 2001, 37(6):786-793.
doi: 10.1007/s11627-001-0130-y
[11] 田雨菁, 胡雅琦. 外源褪黑素对非生物胁迫下植物生长发育的影响. 生物化工, 2020, 6(4):163-164,170.
[12] 武兰兰, 郑耀庭, 李国元, 等. 褪黑素调节植物非生物胁迫耐性的机理. 植物生理学报, 2018, 54(11):1669-1677.
[13] 杨小龙, 须晖, 李天来, 等. 外源褪黑素对干旱胁迫下番茄叶片光合作用的影响. 中国农业科学, 2017, 50(16):3186-3195.
[14] 张明聪, 何松榆, 秦彬, 等. 外源褪黑素缓解干旱胁迫对春大豆苗期影响的生理调控效应. 大豆科学, 2020, 39(5):742-750.
[15] Wei W, Li Q T, Chu Y N. et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2014, 66(3):695-707.
doi: 10.1093/jxb/eru392
[16] Dawood M G, El-Awadi M E. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biologica Colombiana, 2015, 20(2):223-235.
[17] 杜卓, 侯雯, 王丽, 等. 外源褪黑素对干旱胁迫下玉米幼苗的影响. 中国农学通报, 2020, 36(27):14-19.
[18] 黄益宗, 蒋航, 王农, 等. 外源褪黑素对砷胁迫下水稻幼苗生长的影响. 生态学杂志, 2018, 37(6):1738-1743.
[19] 苗含笑, 李东晓, 王久红, 等. 褪黑素对干旱胁迫下小麦生长发育和产量的影响. 干旱地区农业研究, 2020, 38(5):161-167,191.
[20] Li D X, Zhang D, Wang H G, et al. Physiological response of plants to polyethylene glycol (PEG-6000) by exogenous melatonin application in wheat. Zemdirbyste-Agriculture, 2017, 104(3):219-228.
doi: 10.13080/z-a.2017.104.028
[21] 李贺, 姜欣悦, 陈忠诚, 等. 外源褪黑素对低温胁迫下大豆V1期幼苗光合荧光及抗氧化系统的影响. 中国油料作物学报, 2020, 42(4):640-648.
[22] 柯希望, 徐鹏, 殷丽华, 等. 褪黑素延缓红小豆叶片衰老的作用研究. 黑龙江八一农垦大学学报, 2015, 27(5):52-55,86.
[23] 王春华. 红小豆——多功能的补养品. 东方食疗与保健, 2007(9):9-10.
[24] 栾换换. 促生菌与氮和磷配施对红小豆生长发育的影响. 临汾:山西师范大学, 2018.
[25] 杨倩, 裴红宾, 高振峰, 等. 芽孢杆菌ZJM-P5与磷肥互作对红小豆根系及产量的影响. 西北植物学报, 2020, 40(7):1192-1200.
[26] Chen Q, Qi W, Reiter R J, et al. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 2009, 166:324-328.
doi: 10.1016/j.jplph.2008.06.002
[27] Park S, Back K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. Journal of Pineal Research, 2012, 53:385-389.
doi: 10.1111/jpi.2012.53.issue-4
[28] Sarropoulou V N, Therios I N, Dimassi-Theriou K N. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.),Gisela 6 (P. cerasus × P. canescens),and M × M 60 (P. avium × P. mahaleb). Journal of Pineal Research, 2012, 52:38-46.
doi: 10.1111/j.1600-079X.2011.00914.x pmid: 21749439
[29] Jan Kolář, Johnson C H, Ivana M. Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiologia Plantarum, 2010, 118(4):605-612.
doi: 10.1034/j.1399-3054.2003.00114.x
[30] 国海燕. 褪黑素引发种子处理对冬小麦光合特性及生长发育的影响. 杨凌:西北农林科技大学, 2017.
[31] Wang L Y, Liu J L, Wang W X, et al. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 2016, 54:19-27.
doi: 10.1007/s11099-015-0140-3
[32] Yang X L, Xu H, Li D, et al. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica, 2018, 56:884-892.
doi: 10.1007/s11099-017-0748-6
[33] Zafar S, Hasnain Z, Anwar S, et al. Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition. Pakistan Journal of Botany, 2019, 51(6):1987-1994.
doi: 10.30848/PJB2019-6(5)
[34] 何松榆. 干旱胁迫下外源褪黑素对大豆苗期生理特性和产量的影响. 大庆:黑龙江八一农垦大学, 2020.
[35] 邹京南, 于奇, 金喜军, 等. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020, 46(5):745-758.
doi: 10.3724/SP.J.1006.2020.94111
[1] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[2] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[3] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[4] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[5] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[6] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[7] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[8] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[9] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[10] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[11] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[12] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[13] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[14] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[15] Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!