Crops ›› 2022, Vol. 38 ›› Issue (3): 92-98.doi: 10.16035/j.issn.1001-7283.2022.03.013

Previous Articles     Next Articles

The Effects of Different Night Temperature Treatments on in vitro Tuberization and Related-Genes Expression in Potato

Liu Ju(), Li Guangcun, Duan Shaoguang, Hu Jun, Jian Yinqiao, Liu Jiangang, Jin Liping, Xu Jianfei()   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2021-04-30 Revised:2021-05-27 Online:2022-06-15 Published:2022-06-20
  • Contact: Xu Jianfei E-mail:liuju413@163.com;xujianfei@caas.cn

Abstract:

In order to investigate the effects of different night-time temperature treatments on in vitrotuberization in potato, the initial time, percentage and type of in vitrotuberization were recorded using seven potato varieties or materials induced cultured at day/night temperature of 23℃/13℃, 23℃/18℃ and 23℃/23℃. The expression changes in tuberization-related genes were also analysed using initially microtuber formed and non-formed plants. The results showed that for most potato genotypes, compared with other treatments, 23℃/13℃ treatment significantly prolonged the initial time of in vitrotuberization, 23℃/23℃ treatment reduced the percentage of in vitrotuberization, 23℃/18℃ treatment tuberization time was early and the average percentage was 84.3%, the most conducive to the formation of test in vitrotuberization. Potato in vitrotuberization formation was affected on night temperature through regulating gene expression of circadian clock, sugar metabolism and photoperiodic signaling pathway, such as StFKF1, StCO1and StSWEET1.

Key words: Potato, In vitro tuberization, Night temperature, Initiation time of tuberization, Gene expression

Fig.1

Schematic diagram of types of in vitro tuberization in ‘RH’ The red arrow points to in vitro tuberization, bar=1cm"

Table 1

RT-qPCR primer information"

基因名称
Gene name
基因
Gene
功能
Function
引物序列(5’→3’)
Primer sequence (5’→3’)
StFKF1
PGSC0003DMT400051416
蓝光受体蛋白基因,光温信号感应
F:GCTCTACTGGTTATCGCGCT
R:GGGTCACTGTGCCATCATCA
StTOC1
PGSC0003DMT400083086
生物钟基因,昼夜节律调节
F:GGCATGTGCTTTCAACCAGG
R:CCTCAAACGTGGTCTCTGCT
StELF4
PGSC0003DMT400003078
生物钟基因,昼夜节律调节
F:CAGGTGCAGTCTGTGTTGGA
R:TTAGGCTCACGTTCTGCACC
StCO1
PGSC0003DMT400026065
CONSTANS家族成员,块茎形成负调节因子
F:GTAGCAACAATTGGGCAAGGG
R:AGTAAACGGTACATGTTGCGGA
StSP6A
PGSC0003DMG400023365
拟南芥FT同源基因,块茎形成正调节因子
F:ACAGTGTATGCCCCAGGTTG
R:AACAGCTGCAACAGGCAATC
StSEX4
PGSC0003DMT400039423
蛋白络氨酸磷酸酶基因,参与淀粉降解
F:GCCGATCACTTCTCCCAACA
R:TTCCGTATTGCTGCACTGGT
StSWEET1
PGSC0003DMG400024818
蔗糖转运蛋白基因,调节蔗糖流出
F:GTCTGCCATTTGTGTCACCA
R:AATGCCTCAAGTCCTGCTCC
EF1α
PGSC0003DMT400059830
荧光定量内参基因
F:ATTGGAAACGGATATGCTCCA
R:TCCTTACCTGAACGCCTGTCA

Fig.2

Effects on initiation of in vitro tuberization under different night temperature treatments Different lowercase letters indicate significant difference at P < 0.05 level within the same genotype under different day/night temperature treatments, the same below"

Fig.3

Effects on percentage of in vitro tuberization under different night temperature treatments"

Fig.4

Effects on type of in vitro tuberization under different night temperature treatments"

Fig.5

Expression analysis of tuberization related genes under different day/night temperature treatments PT: plants with in vitro tuberization, NPT: plants without in vitro tuberization"

[1] 徐建飞, 金黎平. 马铃薯遗传育种研究:现状与展望. 中国农业科学, 2017, 50(6):990-1015.
[2] Levy D, Veilleux R E. Adaptation of potato to high temperatures and salinity-a review. American Journal of Potato Research, 2007, 84(6):487-506.
doi: 10.1007/BF02987885
[3] Mozos A T, Morris W L, Ducreux L J M, et al. Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnology Journal, 2018, 16(1):197-207.
doi: 10.1111/pbi.12760
[4] Sillmann J, Kharin V V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble:Part 2. future climate projections. Journal of Geophysical Research:Atmospheres, 2013, 118(6):2473-2493.
doi: 10.1002/jgrd.50188
[5] Gregory L E. Some factors for tuberization in the potato plant. American Journal of Botany, 1956, 43(4):281-288.
doi: 10.1002/j.1537-2197.1956.tb10492.x
[6] Slater J W. The effect of night temperature on tuber initiation of the potato. European Potato Journal, 1968, 11(1):14-22.
doi: 10.1007/BF02365158
[7] Singh B, Kukreja S, Goutam U. Impact of heat stress on potato (Solanum tuberosum L.):present scenario and future opportunities. The Journal of Horticultural Science and Biotechnology, 2020, 95(4):407-424.
doi: 10.1080/14620316.2019.1700173
[8] Muthoni J, Kabira J N. Potato production in the hot tropical areas of Africa:progress made in breeding for heat tolerance. Journal of Agricultural Science, 2015, 7(9):220-227.
doi: 10.5539/jas.v7n12p220
[9] Kim Y U, Lee B W. Differential mechanisms of potato yield loss induced by high day and night temperatures during tuber initiation and bulking:photosynthesis and tuber growth. Frontiers in Plant Science, 2019, 10:300.
doi: 10.3389/fpls.2019.00300
[10] Jackson S D. Multiple signaling pathways control tuber induction in potato. Plant Physiology, 1999, 119(1):1-8.
doi: 10.1104/pp.119.1.1
[11] Navarro C, Abelenda J A E, Cue´llar C A, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature:International Weekly Journal of Science, 2011, 478(7367):119-122.
[12] Lehretz G G, Sonnewald S, Hornyik C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Current Biology, 2019, 29(10):1614-1624.
doi: S0960-9822(19)30425-7 pmid: 31056391
[13] Morris W L, Ducreux L J M, Morris J, et al. Identification of TIMING OF CAB EXPRESSION 1 as a temperature-sensitive negative regulator of tuberization in potato. Journal of Experimental Botany, 2019, 70(20):5703-5714.
doi: 10.1093/jxb/erz336 pmid: 31328229
[14] Hastilestari B R. Molecular analysis of potato (Solanum tuberosum) responses to increased temperatures. Nuremberg:Friedrich Alexander University, 2019.
[15] 张小川, 颉瑞霞, 王效瑜, 等. 试管薯诱导期温度对‘宁薯14号’结薯率的效果. 中国马铃薯, 2017, 31(3):134-137.
[16] 周俊. 马铃薯(Solanum tuberosum L.)试管块茎形成的QTL定位及遗传分析. 武汉:华中农业大学, 2014.
[17] Pantelić D, Dragićević I Č,Rudić J, et al. Effects of high temperature on in vitro tuberization and accumulation of stress-responsive proteins in potato. Horticulture,Environment,and Biotechnology, 2018, 59(3):315-324.
doi: 10.1007/s13580-018-0043-x
[18] Shah F, Nie L X, Cui K H, et al. Rice grain yield and component responses to near 2°C of warming. Field Crops Research, 2014, 157:98-110.
doi: 10.1016/j.fcr.2013.12.014
[19] Fang S B, Cammarano D, Zhou G S, et al. Effects of increased day and night temperature with supplemental infrared heating on winter wheat growth in North China. European Journal of Agronomy, 2015, 64:67-77.
doi: 10.1016/j.eja.2014.12.012
[20] 梁俊梅, 贾立国, 秦永林, 等. 马铃薯试管薯形成因素的研究进展. 北方农业学报, 2016, 44(4):105-108.
[21] 赵佐敏. 马铃薯组培中不同因素对诱导试管薯的影响. 中国马铃薯, 2005, 19(5):26-28.
[22] 张武, 齐恩芳, 王一航, 等. 马铃薯试管薯诱导集成优化研究. 长江蔬菜, 2008(12):31-33.
[23] 邱甜, 牛力立, 朱江, 等. 蔗糖浓度、温度及光照强度对试管薯诱导的影响. 安顺学院学报, 2020, 22(5):121-123,135.
[24] 蒋从莲, 郭华春. 不同外源激素和培养温度对马铃薯试管薯形成的影响. 云南农业大学学报, 2007, 22(6):824-828.
[25] Gould P D, Locke J C, Larue C, et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. The Plant Cell, 2006, 18(5):1177-1187.
doi: 10.1105/tpc.105.039990
[26] Hancock R D, Morris W L, Ducreux L J, et al. Physiological,biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant,Cell,Environment, 2014, 37(2):439-450.
doi: 10.1111/pce.12168
[27] Abelenda J A, Bergonzi S, Oortwijn M, et al. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology, 2019, 29(7):1178-1186.
doi: S0960-9822(19)30157-5 pmid: 30905604
[28] 刘洋, 林希昊, 姚艳丽, 等. 高等植物蔗糖代谢研究进展. 中国农学通报, 2012, 28(6):145-152.
[29] Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80(6):847-857.
pmid: 7697715
[30] González-Schain N D, Díaz-Mendoza M, Żurczak M, et al. Potato CONSTANS is involved in photoperiodic tuberization in a graft‐transmissible manner. The Plant Journal, 2012, 70(4):678-690.
doi: 10.1111/j.1365-313X.2012.04909.x pmid: 22260207
[31] Singh A, Siddappa S, Bhardwaj V, et al. Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiology and Biochemistry, 2015, 97:108-116.
doi: 10.1016/j.plaphy.2015.09.014
[32] Hastilestari B R, Lorenz J, Reid S, et al. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell Environment, 2018, 41(11):2600-2616.
doi: 10.1111/pce.13366
[1] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[2] Chen Yuzhen, Tang Guangbin, Ma Xianxin, Tian Guiyun, Yu Hongxin, Luo Yingluo, Fan Mingshou, Jia Liguo. Four Major Regulatory Pathways of Potato Tuber Development [J]. Crops, 2022, 38(4): 9-13.
[3] Zhang Xiaoquan, Jia Zhenyu, Li Juxu, Li Hongchen, Wang Baoxiang, Wang Jian, Shi Gang, Wang Chuan, Wu Yunjie. Effects of Different Root-Promoting Practices on Potassium Metabolism at Mature Stage of Flue-Cured Tobacco in Southern Anhui [J]. Crops, 2022, 38(3): 205-210.
[4] Zhao Kai, Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen. The Role of Wheat Deplantation-Related Genes in Degradation of Chlorophyll in Spring Wheat Leaves [J]. Crops, 2022, 38(2): 81-88.
[5] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[6] Liu Yajun, Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo, Chu Fengli. Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field [J]. Crops, 2021, 37(6): 122-128.
[7] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[8] Luo Lei, Li Yajie, Yao Yanhong, Li Fengxian, Fan Yi, Dong Aiyun, Liu Huixia, Niu Caiping, Li Deming. Effects of Planting Small Whole Potatoes with Different Specifications and Seed Dressing on the Growth and Yield of Potatoes in Continuous Cropping Land [J]. Crops, 2021, 37(6): 211-216.
[9] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[10] Zhang Wei, Li Zhixin, Zhao Xue, Zhang Jinpeng, Fu Chunjiang, Yu Qianqian, Liu Weiping. Development of a Double Test Strip for the Detection of Potato Virus X and Y [J]. Crops, 2021, 37(6): 62-66.
[11] Gong Lintao, Su Xiujuan, Liao Yan, Keremuhan·Wusiman , Zhou Di, Yin Songsong. Cloning, Expression and Enzyme Activity Detection of Linalool Synthase Gene in Lavender [J]. Crops, 2021, 37(6): 78-87.
[12] Hu Qiguo, Liu Yajun, Wang Wenjing, Wang Qi, Wang Honggang, Chu Fengli. Effects of Sweet Potato Rotation and Intercropping on the Microbial Community of Rhizosphere Soil [J]. Crops, 2021, 37(5): 153-159.
[13] Lou Shubao, Li Fengyun, Tian Guokui, Wang Haiyan, Tian Zhendong, Wang Lichun, Liu Xicai, Wang Hui. Evaluation of Germplasms for Resistance to Potato Late Blight and Molecular Markers Assisted Screening [J]. Crops, 2021, 37(4): 196-201.
[14] Yang Ping, Chen Yuli, Gong Fajiang, Bi Haibin, Gao Minghui. Bulking Characteristics of Potato Tubers and Its Correlation with Tuber Fresh Weight [J]. Crops, 2021, 37(2): 130-134.
[15] Qiu Tian, Niu Lili, Zhu Jiang, Cai Fuge, Wang Qingwei. Effects of Three Growth Regulators on the Growth of Potato Test-Tube Seedlings [J]. Crops, 2021, 37(2): 160-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!