Crops ›› 2022, Vol. 38 ›› Issue (4): 54-61.doi: 10.16035/j.issn.1001-7283.2022.04.008

Previous Articles     Next Articles

Classification of Soybean Heterotic Groups Based on SSR Molecular Markers for Yield-Related Traits

Lei Lei1,2(), Guan Zheyun2, Cao Shiliang3, Wang Yumin2, Lin Chunjing2, Peng Bao2, Liu Peng1, Zhao Limei2, Li Zhigang1, Zhang Chunbao1,2()   

  1. 1College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028042, Inner Mongolia, China
    2Soybean Research Institute, Jilin Academy of Agricultural Sciences/Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, Jilin, China
    3Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2022-03-18 Revised:2022-04-11 Online:2022-08-15 Published:2022-08-22
  • Contact: Zhang Chunbao E-mail:957569131@qq.com;cbzhang@cjaas.com

Abstract:

The utilization of heterosis can significantly improve soybean yield, but the creation of parents and the preparation of hybrid combinations lack effective theoretical guidance, resulting in blindness in the preparation of hybrid combinations and long production cycle of strong soybean hybrids. In response to the above problems, the genetic diversity analysis and heterotic group classification of 43 parents in Northeast China and abroad as materials using 14 SSR molecular markers related to soybean yield traits. The results showed that the SSR markers amplified a total of 31 allelic variation sites, with an average of 2.2143 allelic variation sites for each marker, with a variation range of 2.0000-4.0000; the main gene frequency was 0.4419-0.9302, with an average of 0.6817. The genetic diversity indexes ranged from 0.1298 to 0.6101, with an average of 0.4043. The polymorphism information content ranged from 0.1214 to 0.5272, with an average of 0.3280. According to genetic distance, 43 parental materials were divided into two groups; 35 parental materials of 25 hybrids were divided into two groups; and 39 parental materials of 27 hybrids were hybrid combinations prepared from domestic and foreign materials, highlighting the strong heterosis between Northeast China materials and foreign materials.The analysis of the genetic distance between the parents of the hybrids used in this study showed that when the genetic distance was between 0.4 and 0.6, the utilization efficiency of heterosis was higher. The results provides references for the breeding direction of excellent parents and the rational combination of parents of strong dominant hybrids.

Key words: Soybean, Heterosis, SSR molecular markers, Heterotic group, Genetic diversity

"

SSR标记
SSR marker
所在染色体
Chromosome
引物序列
Primer sequence (5′-3′)
关联性状
Associated trait
参考文献
Reference
BARCSOYSSR_02_1667 2 F:TCGTGTTAGATTTTTACTGTCACATT 籽粒大小 [17]
R:AACTGCATACCCTTTGTTTGAA
BARCSOYSSR_04_0034 4 F:GCGCCCGGAACTTGTAATAACCTAAT 籽粒大小 [17]
R:GCGCTCTCTTATGATGTTCATAATAA
BARCSOYSSR_06_0778 6 F:GCGCATGGTTTACAGATTACTTTATTTTCTA 单株粒重 [18]
R:GCGGCAATCATTTAAATTTATAATGATATAT
BARCSOYSSR_12_1142 12 F:GCGAACTGTAGTTTACTAAAAATAAGTG 单株粒重 [19]
R:GCGGACTGAATTAATATTGGTGTTGAATT
BARCSOYSSR_13_0272 13 F:GCGAATTTGGATTAATTAAATTTATG 每荚粒数 [20]
R:GCGCTCGGTCCTCTCAAATAAGGTCTC
BARCSOYSSR_13_0340 13 F:GCGTGCCAGGTAGAAAAATATTAG 每荚粒数 [20]
R:GCGGTTTTTCACTTTTCAAAATTC
BARCSOYSSR_07_0109 7 F:GCGTTGATACTTTCCTAAGACAAT 单株荚数 [21]
R:GGGAGAGAAGGCAATCTAA
BARCSOYSSR_11_0482 11 F:CACTGCTTTTTCCCCTCTCT 单株荚数 [22]
R:AAGATACCCCCAACATTATTTGTAA
BARCSOYSSR_11_0342 11 F:GCGCTACCGTGTGGTGGTGTGCTACCT 分枝数 [23]
R:GCGCAAGTGGCCAGCTCATCTATT
BARCSOYSSR_19_1071 19 F:CGCACCCCTCATCCTATGTA 分枝数 [24]
R:CCAACTAATCCCAGGGACTTACTT
BARCSOYSSR_06_1581 6 F:GCGCTGGCCTTTAGAAC 百粒重 [25]
R:GCGTTGTAGGAAATTTGAGTAGTAAG
BARCSOYSSR_13_1098 13 F:GCGTTAAGAATGCATTTATGTTTAGTC 百粒重 [26]
R:GCGAGTTTTTGGTTGGATTGAGTTG
BARCSOYSSR_01_1571 1 F:GCGCATGATAACCTATAATGAGAT 主茎节数 [27]
R:CCAGCAAGCAATGCTCGGTCTACT
BARCSOYSSR_13_1271 13 F:CAAGCTCAAGCCTCACACAT 主茎节数 [28]
R:TGACCAGAGTCCAAAGTTCATC

Fig.1

UPGMA cluster of parent materials based on SSR markers"

Table 2

Results of parental strata of hybrid species"

杂交种名称
Hybrid name
母本Female parent 父本Male parent 亲本间遗传距离
GD between parents
同型保持系
Homotypic maintainers
来源地
Place of origin
所在群
Group
名称
Name
来源地
Place of origin
所在群
Group
杂交豆1号 JLCMS9B 中国黑龙江 JLR1 美国 0.6153
杂交豆2号 JLCMS47B 中国吉林 JLR2 美国 0.6428
杂交豆3号 JLCMS8B 中国黑龙江 JLR9 美国 0.5000
杂交豆4号 JLCMS47B 中国吉林 JLR83 意大利 0.5384
杂交豆5号 JLCMS84B 中国黑龙江 JLR1 美国 0.4285
吉育606 JLCMS47B 中国吉林 JLR100 美国 0.5000
吉育607 JLCMS14B 中国黑龙江 JLR83 意大利 0.2307
吉育608 JLCMS84B 中国黑龙江 JLR113 美国 0.5000
吉育609 JLCMS103B 中国黑龙江 JLR102 美国 0.2076
吉育610 JLCMS128B 中国吉林 JLR98 美国 0.5714
吉育611 JLCMS147B 中国黑龙江 JLR113 美国 0.3571
吉育612 JLCMS57B 美国 JLR9 美国 0.3846
吉育626 JLCMS230B 中国吉林 JLR9 美国 0.3571
吉育627 JLCMS179B 美国 JLR9 美国 0.5000
吉育633 JLCMS204B 美国 JLR230 中国吉林 0.4285
吉育635 JLCMS34B 中国黑龙江 JLR300 中国黑龙江 0.4285
吉育637 JLCMS210B 美国 JLR209 中国吉林 0.5714
吉育639 JLCMS178B 中国吉林 JLR97 美国 0.4285
吉育641 JLCMS191B 美国 JLR158 中国黑龙江 0.5000
杂交种名称
Hybrid name
母本Female parent 父本Male parent 亲本间遗传距离
GD between parents
同型保持系
Homotypic maintainers
来源地
Place of origin
所在群
Group
名称
Name
来源地
Place of origin
所在群
Group
吉育643 JLCMS212B 美国 JLR346 中国吉林 0.6666
吉育645 JLCMS234B 中国黑龙江 JLR9 美国 0.5000
吉育647 JLCMS5B 中国黑龙江 JLR2 美国 0.4285
吉育649 JLCMS209B 美国 JLR158 中国黑龙江 0.6428
吉育653 JLCMS242B 中国吉林 JLR300 中国黑龙江 0.3571
吉育654 JLCMS234B 中国黑龙江 JLR13 美国 0.2857
吉育660 JLCMS204B 美国 JLR419 中国吉林 0.4285
吉育667 JLCMS164B 美国 JLR227 中国吉林 0.3076
佳吉1号 JLCMS178B 中国吉林 JLR124 美国 0.5714
吉农H1 JLCMS254B 美国 JLR192 中国黑龙江 0.5000
吉农H2 JLCMS212B 美国 JLR414 中国吉林 0.5714

Fig.2

Genetic distance distribution of hybrid parents based on SSR markers"

Table 3

Genetic diversity analysis of test materials by SSR markers on different groups"

来源Origin MAF Na GI PIC
总群Total group 均值 0.6871 2.2143 0.4043 0.3280
范围 (0.4419~0.9302) (2.0000~4.0000) (0.1298~0.6101) (0.1214~0.5272)
类群Ⅰ GroupⅠ 均值 0.7233 2.0714 0.3449 0.2801
范围 (0.4074~1.0000) (1.0000~4.0000) (0.0000~0.6475) (0.0000~0.5720)
类群Ⅱ GroupⅡ 均值 0.7622 1.9286 0.3243 0.2612
范围 (0.5000~1.0000) (1.0000~2.0000) (0.0000~0.5000) (0.0000~0.3750)

Fig.3

Analysis of genetic diversity between groups by SSR markers"

Fig.4

PcoA scatter plot based on SSR marker detection of genotype and clustering results"

[1] 孙妍妍, 赵丽梅, 张伟, 等. 大豆杂种优势利用研究进展. 大豆科技, 2021(6):26-35.
[2] 张媛媛, 杨艳华, 陈克平. 杂种优势的研究进展. 生命科学研究, 2016, 20(5):447-454.
[3] 吴倩, 李智, 于伟, 等. 大豆亲本间遗传距离与杂种优势的相关性研究. 中国农学通报, 2020, 36(1):43-48.
[4] 王艳玲, 奚广生, 王丕武, 等. 大豆不同杂交组合杂种优势分析. 大豆科学, 2008, 27(5):761-772.
[5] 刘红占. 小麦雄性不育蛋白组学与泛素化修饰蛋白组学的研究. 杨凌:西北农林科技大学, 2014.
[6] 赵丽梅, 孙寰, 王曙明, 等. 大豆杂交种杂交豆1号选育报告. 中国油料作物学报, 2004, 26(3):16-18.
[7] 张丽敏. 玉米种质资源杂种优势类群的鉴定. 泰安:山东农业大学, 2015.
[8] Senior M L, Murphy J P, Goodman M M, et al. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Science, 1998, 38(4):1088-1098.
doi: 10.2135/cropsci1998.0011183X003800040034x
[9] 聂永心, 张丽, 潘光堂, 等. SSR分子标记在玉米杂种优势群划分中的应用. 玉米科学, 2004, 12(3):26-29.
[10] 罗小金, 贺浩华, 付军如, 等. 利用SSR分子标记划分籼型水稻杂种优势群. 杂交水稻, 2006, 21(1):61-64.
[11] 张涛, 杨蛟, 蒋开锋, 等. 利用产量功能基因标记分析三系杂交水稻亲本的遗传多样性. 中国农业科学, 2014, 47(1):11-23.
[12] 于海至. 中国油菜强优势杂交种骨干亲本的遗传分析. 武汉:华中农业大学, 2015.
[13] 白志元, 张瑞军, 武国平, 等. 基于SSR标记的杂交大豆主要亲本遗传多样性分析. 华北农学报, 2018, 33(4):120-125.
[14] 丁孝羊, 林春晶, 彭宝, 等. 大豆RN型细胞质雄性不育系及保持系cDNA-AFLP分析. 分子植物育种, 2017, 15(8):3160-3165.
[15] Liu K J, Muse S V. Power Marker:an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9):2128-2129.
doi: 10.1093/bioinformatics/bti282
[16] 刘小敏. 基于SSR标记的中国大豆育成品种的遗传多样性和遗传结构研究. 南昌:南昌大学, 2014.
[17] Niu Y, Xu Y, Liu X F, et al. Association mapping for seed size and shape traits in soybean cultivars. Molecular Breeding, 2013, 31(4):785-794.
doi: 10.1007/s11032-012-9833-5
[18] Yao D, Liu Z Z, Zhang J, et al. Analysis of quantitative trait loci for main plant traits in soybean. Genetics and Molecular Research, 2015, 14(2):6101-6109.
doi: 10.4238/2015.June.8.8 pmid: 26125811
[19] Han Y P, Li D M, Zhu D R, et al. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theoretical and Applied Genetics, 2012, 125(4):671-683.
doi: 10.1007/s00122-012-1859-x
[20] Tomiko A, Tomoko T, Kaede T, et al. Global gene expression profiles in developing soybean seeds. Plant Physiology and Biochemistry, 2012, 52(31):147-153.
doi: 10.1016/j.plaphy.2011.12.007
[21] Liu W, Jin W Y, Fan J R, et al. QTL identification of yield-related traits and their association with flowering and maturity in soybean. Journal of Crop Science and Biotechnology, 2011, 14(1):65-70.
doi: 10.1007/s12892-010-0115-7
[22] Zhang D, Cheng H, Wang H, et al. Identification of genomic regions determining flower and pod numbers development in soybean (Glycine max L.). Journal of Genetics and Genomics, 2010, 37(8):545-556.
doi: 10.1016/S1673-8527(09)60074-6 pmid: 20816387
[23] Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) Genetic map and their association with EST markers. Theoretical and Applied Genetics, 2004, 108(6):1131-1139.
pmid: 15067400
[24] Hyten D L, Pantalone V R, Sams C E, et al. Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics, 2004, 109(3):552-561.
pmid: 15221142
[25] Sayama T, Hwang T Y, Yamazaki H, et al. Mapping and comparison of quantitative trait loci for soybean branching phenotype in two locations. Breeding Science, 2010, 60(4):380-389.
doi: 10.1270/jsbbs.60.380
[26] Chen Q S, Zhang Z C, Liu C Y, et al. QTL analysis of major agronomic traits in soybean. Agricultural Sciences in China, 2007, 60(4):399-405.
[27] He Q Y, Yang H Y, Xiang S H, et al. QTL mapping for the number of branches and pods using wild chromosome segment substitution lines in soybean [Glycine max (L.) Merr.]. Plant Genetic Resources, 2014, 12(S1):172-177.
[28] Gai J Y, Wang Y J, Wu X L, et al. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants with a case in soybean. Frontiers of Agriculture of China, 2007, 1(1):1-7.
doi: 10.1007/s11703-007-0001-3
[29] 钟文娟, 袁灿, 周永航, 等. 基于SSR标记的四川大豆与引进大豆资源遗传多样性和群体结构分析. 大豆科学, 2017, 36(5):657-668.
[30] 魏苗, 李建东, 燕雪飞, 等. 中国东北野生大豆SSR遗传多样性及亲缘关系分析. 大豆科学, 2011, 30(3):388-396.
[31] 董俊丽, 王海岗, 陈凌, 等. 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015, 48(16):3121-3131.
[32] 强海平, 余国辉, 刘海泉, 等. 基于SSR标记的中美紫花苜蓿品种遗传多样性研究. 中国农业科学, 2014, 47(14):2853-2862.
[33] Anderson J A, Churchill G A, Autrique J E, et al. Optimizing parental selection for genetic linkage maps. Genome, 1993, 36(1):181-186.
pmid: 18469981
[34] Lippman Z B, Zamir D. Heterosis:revisiting the magic. Trends in Genetics, 2007, 23:60-66.
doi: 10.1016/j.tig.2006.12.006
[35] Moll R H, Longquist J H, Fortuna J V, et al. The relation of heterosis and genetic divergence in maize. Genetics, 1965, 52(1):139-144.
doi: 10.1093/genetics/52.1.139 pmid: 17248265
[36] Boeven P H G, Zhao Y, Thorwarth P, et al. Negative dominance and dominance-by-dominance epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Science Advances, 2020, 6(24):4897.
[1] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[2] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[3] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[4] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[5] Duan Liuying, Wu Ting, Li Xia, Xie Jiankun, Hu Biaolin. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice [J]. Crops, 2022, 38(1): 20-30.
[6] Li Wenlue, Chen Changli, Luo Xiahong, Liu Tingting, An Xia, Jin Guanrong, Zhu Guanlin. Genetic Diversity Analysis of Phenotypic Characteristics of Kenaf Resources in Zhejiang Province [J]. Crops, 2022, 38(1): 50-55.
[7] Gao Zhanning, Wang Shujie, Feng Hui, Xue Zhenggang, Yang Yongqian, Song Xiaopeng, Jie Yuanfen. Comprehensive Evaluation of Two-Rowed Barley Varieties (Lines) [J]. Crops, 2022, 38(1): 70-76.
[8] Han Dezhi. Study on the Accurate Detection Method of Soybean Fried Pod Phenotype [J]. Crops, 2022, 38(1): 84-87.
[9] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[10] Guo Yuqi, Wang Caijin, Wang Yang. Diversity Analysis of Seed Vigor-Related Traits of Spring Soybean Landraces in North China [J]. Crops, 2021, 37(5): 211-218.
[11] Liu Xin, Yang Fang, Deng Junbo, Wang Aiai, He Nian, Chen Yan. Phenotypic Analysis and Comprehensive Evaluation of Soybean Strains in Jianghan Plain of China [J]. Crops, 2021, 37(5): 57-63.
[12] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[13] Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58.
[14] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[15] Chu Guanghong, Zhang Jianxin, Wang Cong, Zhao Zhanying. Effects of Topping at Different Nodes at Seedling Stage on Root Growth and Yield of High-Yield Spring Soybean [J]. Crops, 2021, 37(3): 195-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!