Crops ›› 2022, Vol. 38 ›› Issue (6): 152-158.doi: 10.16035/j.issn.1001-7283.2022.06.022

Previous Articles     Next Articles

Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage

Yin Xilong1,2(), Shi Yang1,2, Li Wangsheng1,2, Xing Wang1,2()   

  1. 1National Medium-Term Repository of Sugar Beet Germplasm, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2022-08-30 Revised:2022-10-11 Online:2022-12-15 Published:2022-12-21
  • Contact: Xing Wang E-mail:2567102543@qq.com;xyjiayou_086@163.com

Abstract:

Drought stress is an important abiotic factor that inhibits the growth and development of sugar beet and affects yield. The drought-tolerant sugar beet germplasm Yi'an No.1 (V1) and the drought-sensitive germplasm 92011/1-6/1 (V2) were used as test materials to investigate the photosynthetic physiological responses of sugar beet seedlings of different drought-tolerant varieties to drought stress. The effects of drought stress on the growth and development, chlorophyll content, and apparent photosynthesis of sugar beet seedlings were investigated. The results showed that the stem diameter, root length, plant height, leaf fresh weight, root fresh weight, leaf dry weight, and root dry weight of the two sugar beet seedlings decreased under drought stress, and the decrease in V1 was less pronounced than V2, and the decrease in V1 was smaller than V2. The net photosynthetic rate, transpiration rate, leaf stomatal conductance and intercellular CO2 concentration of sugar beet seedlings were significantly reduced by drought stress, and V1 was less affected than V2. The response mechanisms of different drought-tolerant sugar beet varieties to drought stress were somewhat different, which could further analyze their drought resistance and provide a theoretical basis for breeding, stress-resistant cultivation and stable yield of sugar beet.

Key words: Sugar beet, Drought stress, Photosynthetic physiology

Table 1

Phenotypic indexes of sugar beet seedlings"

时间
Time (d)
处理
Treatment
品种
Variety
茎粗
Stem
diameter (cm)
株高
Plant
height (cm)
根长
Root length
(cm)
叶鲜重
Leaf fresh
weight (g)
根鲜重
Root fresh
weight (g)
叶干重
Leaf dry
weight (g)
根干重
Root dry
weight (g)
2 CK V1 4.07±0.11a 16.33±0.85a 25.33±0.62a 4.62±0.09a 1.83±0.08a 0.66±0.03a 0.17±0.00a
V2 3.91±0.07a 14.67±0.24a 25.00±0.41a 4.48±0.08a 1.81±0.05a 0.61±0.02ab 0.16±0.00a
DS V1 3.85±0.10a 15.33±0.24a 24.17±0.62a 4.41±0.14a 1.67±0.06a 0.55±0.02b 0.17±0.00a
V2 3.25±0.04b 12.67±0.62b 21.33±0.85b 3.40±0.11b 1.36±0.04b 0.44±0.02c 0.15±0.00b
5 CK V1 5.89±0.07a 20.43±0.76a 31.73±0.61a 12.94±0.57a 4.08±0.51a 0.90±0.06a 0.28±0.01a
V2 5.75±0.06a 19.17±0.24a 30.50±0.41a 13.00±0.72a 3.59±0.18a 0.85±0.02a 0.27±0.02a
DS V1 3.56±0.06b 13.50±0.41b 22.17±0.62b 4.18±0.12b 1.41±0.05b 0.36±0.02b 0.15±0.00b
V2 2.89±0.04c 10.00±0.41c 17.00±0.41c 2.94±0.09b 1.02±0.09b 0.19±0.02c 0.13±0.00b
7 CK V1 8.79±0.18a 24.33±0.47a 37.00±0.82a 16.75±0.53a 5.98±0.13a 1.69±0.10a 0.43±0.02a
V2 8.73±0.18a 23.67±0.24a 36.17±0.62a 16.55±0.17a 5.93±0.10a 1.65±0.07a 0.42±0.02a
DS V1 3.35±0.11b 11.83±0.34b 20.33±0.85b 4.01±0.13b 1.25±0.06b 0.24±0.03b 0.14±0.00b
V2 2.46±0.06c 6.00±0.41c 13.00±0.41c 2.50±0.13c 0.76±0.06c 0.14±0.01b 0.07±0.01c

Fig.1

Total chlorophyll content of sugar beet seedling leaves under normal water conditions Different small letters indicate significant difference (P < 0.05), the same below"

Fig.2

Total chlorophyll content of sugar beet seedling leaves under drought stress"

Fig.3

Total chlorophyll content of V1 sugar beet seedling leaves under different water conditions"

Fig.4

Total chlorophyll content of V2 sugar beet seedling leaves under different water conditions"

Table 2

Apparent photosynthetic index of sugar beet seedling leaves"

时间Time (d) 处理Treatment 品种Variety Pn [μmol/(m2·s)] Tr [mmol/(m2·s)] Gs [mmol/(m2·s)] Ci (μmol/mol)
2 CK V1 20.51±0.22a 1.24±0.07a 70.94±4.14bc 862.77±30.84a
V2 17.90±0.24b 1.35±0.23a 94.21±23.87ab 636.90±16.52b
DS V1 18.58±0.13c 1.49±0.09a 111.60±8.34a 440.97±1.13c
V2 11.68±0.18d 0.75±0.01b 38.80±1.22c 317.57±15.77d
5 CK V1 25.14±0.02a 1.72±0.16a 148.92±33.20a 900.27±23.73a
V2 24.28±1.18a 1.81±0.19a 170.69±20.55a 864.90±47.15a
DS V1 17.13±0.04b 0.69±0.03b 36.49±2.57b 406.00±43.93b
V2 6.18±0.19c 0.36±0.02c 17.99±1.12b 259.97±12.42c
7 CK V1 31.51±0.08a 2.56±0.02a 454.71±13.95a 1336.70±66.56a
V2 30.03±0.08b 1.91±0.15b 223.28±43.64b 1121.30±96.12b
DS V1 15.43±0.10c 0.57±0.01c 35.67±0.55c 380.13±16.82c
V2 1.04±0.08d 0.20±0.01d 8.99±0.38c 173.90±7.45d
[1] 梅书洋, 何敏敏, 耿贵, 等. 外源钙对干旱胁迫下甜菜幼苗生长的影响. 中国糖料, 2022, 44(3):34-40.
[2] 李志, 薛姣, 耿贵, 等. 逆境胁迫下甜菜生理特性的研究进展. 中国农学通报, 2021, 37(24):39-47.
[3] 陈润仪, 贺泽霖, 贾也纯, 等. 干旱胁迫对甜菜生长的影响及甜菜抗旱育种研究进展. 中国糖料, 2021, 43(3):54-60.
[4] 陈艺文, 李用财, 余凌羿, 等. 中国三大主产区甜菜糖业发展分析. 中国糖料, 2017, 39(4):74-76.
[5] 崔毅, 吴然, 王春. 中国干旱区水资源利用与经济增长关系研究——以宁夏回族自治区为例. 哈尔滨工业大学学报:社会科学版, 2018, 20(2):135-140.
[6] 唐利华, 樊华, 李阳阳, 等. 甜菜叶片、根系含水量及根系活力对干旱胁迫的反应. 新疆农垦科技, 2019, 42(1):8-10.
[7] Taleghani D, Rajabi A, Hemayati S S, et al. Improvement and selection for drought-tolerant sugar beet (Beta vulgaris L.) pollinator lines. Results in Engineering, 2022, 13:100367.
doi: 10.1016/j.rineng.2022.100367
[8] 邹利茹, 张福顺, 刘乃新, 等. 甜菜干旱胁迫响应研究进展. 中国糖料, 2021, 43(1):36-44.
[9] Zhang Z, Hu M, Xu W, et al. Understanding the molecular mechanism of anther development under abiotic stresses. Plant Molecular Biology, 2021, 105(1):1-10.
doi: 10.1007/s11103-020-01074-z
[10] Yoon Y, Seo D H, Shin H, et al. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy, 2020, 10(6):788.
doi: 10.3390/agronomy10060788
[11] Rhaman M S, Imran S, Karim M, et al. 5-aminolevulinic acid- mediated plant adaptive responses to abiotic stress. Plant Cell Reports, 2021, 40(8):1451-1469.
doi: 10.1007/s00299-021-02690-9
[12] 孙萌, 尚忠海, 沈植国, 等. 植物对干旱胁迫响应的研究进展. 河南林业科技, 2019, 39(4):1-3.
[13] 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 2019, 21(2):19-25.
doi: 10.13304/j.nykjdb.2018.0115
[14] 温琦, 赵文博, 张幽静, 等. 植物干旱胁迫响应的研究进展. 江苏农业科学, 2020, 48(12):11-15.
[15] 沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展——从表型到分子. 生物技术进展, 2017, 7(3):169-176.
[16] Gechev T, Petrov V. Reactive oxygen species and abiotic stress in plants. International Journal of Molecular Sciences, 2020, 21 (20):7433.
doi: 10.3390/ijms21207433
[17] 王克哲, 李思忠, 杜亚敏, 等. 干旱胁迫对甜菜块根膨大期光合光响应特性的影响. 新疆农业科学, 2020, 57(3):434-441.
doi: 10.6048/j.issn.1001-4330.2020.03.006
[18] 李思忠, 高卫时, 张立明, 等. 干旱对甜菜叶丛期光系统Ⅱ及光合作用的影响. 草业科学, 2021, 38(8):1548-1558.
[19] 张净, 王锦霞, 郭萌萌, 等. 甜菜幼苗对干旱胁迫的适应机制. 中国农学通报, 2020, 36(32):1-7.
[20] 王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 1900.
[21] 石建福, 施圣高, 王新其, 等. 播期、播量对大麦‘花22’产量及构成因素的影响. 农学学报, 2014, 4(12):8-11.
[22] 王新军, 阎世江. 干旱胁迫对番茄幼苗生理特性的影响. 中国瓜菜, 2022, 35(6):76-80.
[23] Karagoz H, Cakmakci R, Hosseinpour A, et al. Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits rhizobacteria. Applied Ecology and Environmental Research, 2018, 16(5):6801-6813.
[24] Fugate K K, Lafta A M, Eide J D, et al. Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. Journal of Agronomy and Crop Science, 2018, 204(6):566-576.
doi: 10.1111/jac.12286
[25] 徐明远, 王谦博, 郭盛磊, 等. 干旱胁迫对刺五加生长以及光合生理参数的影响. 中国实验方剂学杂志, 2021, 27(1):181-187.
[26] 李剑威, 晏舒蕾, 黄元城, 等. 薄壳山核桃幼苗对干旱胁迫的生理生化响应. 核农学报, 2020, 34(10):2326-2334.
doi: 10.11869/j.issn.100-8551.2020.10.2326
[27] Wang R, Li X G, Li S P, et al. Changes in seedling photosynthetic physiology characteristics of musa varieties under drought stress. Journal of Southwest Forestry University, 2010, 30(4):44-49.
[28] 曾继娟, 朱强, 岑晓斐, 等. 胡枝子幼苗对干旱胁迫的生理响应. 北方农业学报, 2022, 50(2):53-60.
doi: 10.12190/j.issn.2096-1197.2022.02.07
[29] Wang N, Chen H, Wang L. Physiological acclimation of Dicranostigma henanensis to soil drought stress and rewatering. Acta Societatis Botanicorum Poloniae, 2021, 90:907.
doi: 10.5586/asbp.907
[30] Mukami A, Ngetich A, Mweu C, et al. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiology and Molecular Biology of Plants, 2019, 25(4):837-846.
doi: 10.1007/s12298-019-00679-z pmid: 31402813
[31] 韩凯虹, 刘玉华, 张继宗, 等. 水分对甜菜光合及叶绿素荧光特性的影响. 农业资源与环境学报, 2015, 32(5):463-470.
[32] Wang X, Xia J B, Cao X B. Physiological and ecological characteristics of periploca sepium bunge under drought stress on shell sand in the Yellow River delta of China. Scientific Reports, 2020, 10(1):1-11.
doi: 10.1038/s41598-019-56847-4
[33] Liu J, Deng J L, Tian Y. Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress. Phytochemistry, 2020, 171:112226.
doi: 10.1016/j.phytochem.2019.112226
[34] Li W T, Ning P, Wang F, et al. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress. The Journal of Applied Ecology, 2020, 31(5):1543-1550.
[35] 李丽杰, 顾万荣, 孟瑶, 等. 干旱胁迫下亚精胺对玉米幼苗抗旱性影响的生理生化机制. 应用生态学报, 2018, 29(2):554-564.
[36] Khalvandi M, Siosemardeh A, Roohi E, et al. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 2021, 7(1):e05908.
doi: 10.1016/j.heliyon.2021.e05908
[37] Islam M J, Kim J W, Begum M K, et al. Physiological and biochemical changes in sugar beet seedlings to confer stress adaptability under drought condition. Plants, 2020, 9(11):1511.
doi: 10.3390/plants9111511
[38] 陈芳, 谷晓平, 于飞, 等. 贵州辣椒光合生理特性对干旱胁迫的响应. 作物杂志, 2021(5):160-165.
[39] 吴海霞, 赖淼, 孙亚卿, 等. 甜菜幼苗叶片对干旱胁迫的生理响应及其蛋白质组学分析. 植物生理学报, 2022, 58(5):835-843.
[40] 曹兵, 宋丽华, 谢应吉. 土壤干旱胁迫对臭椿苗木生理指标的影响. 东北林业大学学报, 2008, 36(9):11-13.
[1] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[2] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[3] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[4] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[5] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[6] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[7] Cai Qiqi, Wang Gang, Dong Yinzhuang, Yu Lihua, Wang Yuguang, Geng Gui. Effects of Different Neutral Salt Stress on Photosynthesis and Antioxidant Enzyme System of Sugar Beet Seedlings [J]. Crops, 2022, 38(1): 130-136.
[8] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[9] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[10] Chen Fang, Gu Xiaoping, Yu Fei, Hu Jiamin, Zuo Jin, Hu Xinxin, Liu Yupeng, Hu Feng. Response of Photosynthetic Physiological Characteristics of Pepper in Guizhou under Drought Stress [J]. Crops, 2021, 37(5): 160-165.
[11] Lü Wei, Ren Guoxiang, Han Junmei, Wen Fei, Wang Ruopeng, Liu Wenping. Effects of Drought Stress on Physiological and Biochemical Indexes of Sesame Seedlings [J]. Crops, 2021, 37(5): 172-175.
[12] Zhang Ting, Zhang Bowen, Li Guolong, Cao Yang, Li Yue, Zhang Shaoying. Effects of Phosphorus Application Rate and Method on Photosynthetic Performance and Yield of Sugar Beet [J]. Crops, 2021, 37(5): 187-193.
[13] Ding Liuhuizi, Pi Zhi, Wu Zedong. Construction of SSR Fingerprint and Analysis of Genetic Diversity of Sugar Beet Varieties [J]. Crops, 2021, 37(5): 72-78.
[14] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[15] Song Ruijiao, Feng Caijun, Qi Juncang. Effects of Hydrogen-Rich Water on Barley Seed Germination and Barley Seedling Biomass Distribution under Drought Stress [J]. Crops, 2021, 37(4): 206-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!