Crops ›› 2023, Vol. 39 ›› Issue (2): 16-23.doi: 10.16035/j.issn.1001-7283.2023.02.003

Previous Articles     Next Articles

Progress in the Technical Principle, Commercialization and Testing Research of Gene Edited Crops

Dou Yinggang1(), Zhen Zhen2()   

  1. 1School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, Xinjiang,China
    2Qiqihar Integrated Laboratory of Harbin Customs Technology Center, Qiqihar 161000, Heilongjiang, China
  • Received:2022-03-25 Revised:2022-07-26 Online:2023-04-15 Published:2023-04-11

Abstract:

Since the introduction of gene editing technology in 2012, it has attracted widespread attention and continues to break new ground in terms of application prospects. This technology uses “molecular scissors” to break DNA double strands and attach non-homologous ends or homologous recombination to mutate, knock out, insert or replace specific sites in DNA. This paper detailed the principles and technical methods of various gene editing technologies to date, explained the current application of the technology and the progress of commercialization of the edited crops, and analyzed the detection studies of the technology. Gene editing technology has become a global hotspot, new technologies and new research results are springing up and being applied in the fields of plant and animal breeding, disease treatment, drug development, etc. In the future, this technology will definitely show its revolutionary significance, and how to regulate, detect, and commercialize the application will become an urgent problem to be solved by the regulatory authorities.

Key words: Gene editing, Principle, Application, Regulation, Detection

Fig.1

Cre-lox mediated schematic"

Fig.2

Schematic diagram of ZFNs"

Fig.3

The principle of TALEN"

Fig.4

The principle of CRISPR/Cas9"

[1] 许丽, 王玥, 姚驰远. 基因编辑技术发展态势分析与建议. 中国生物工程杂志, 2018, 38(12):113-122.
[2] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337:816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[3] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823.
doi: 10.1126/science.1231143 pmid: 23287718
[4] 陈一欧, 宝颖, 马华峥, 等. 基因编辑技术及其在中国的研究发展. 遗传, 2018, 40(10):900-915.
[5] 王贵利, 张连峰. 基因工程大鼠研究进展. 中国比较医学杂志, 2013, 23(3):71-76.
[6] 丁霖, 彭城, 殷海军, 等. 基因组编辑技术及其检测鉴定方法研究进展. 浙江农业科学, 2019, 60(2):274-280.
[7] Wang Z, Cui W G. CRISPR-Cas system for biomedical diagnostic platforms. View, 2020, 1(3):8.
[8] Ling X Y, Chang L Y, Chen H Q, et al. Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Molecular Cell, 2021, 81 (22):4747-4756.
doi: 10.1016/j.molcel.2021.09.021 pmid: 34648747
[9] 希区客. 超越CRISPR的新型基因编辑技术RLR. 世界科学, 2021(7):23-24.
[10] Xu X, Chemparathy A, Zeng L, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Molecular Cell, 2021, 81(20):4333-4345.
doi: 10.1016/j.molcel.2021.08.008 pmid: 34480847
[11] 刘红, 江敬红, 段志娟, 等. 光控CRISPR技术的研究进展. 高等学校化学学报, 2021, 42(11):3321-3333.
[12] Carroll D. Genome Editing:past,present,and future. The Yale Journal of Biology and Medicine, 2017, 90(4):653-659.
pmid: 29259529
[13] Pan Y, Yang J, Luan X, et al. Near-infrared upconversion- activated CRISPR-Cas 9 system:a remote-controlled gene editing platform. Science Advances, 2019, 5(4):eaav7199.
doi: 10.1126/sciadv.aav7199
[14] Moroz-Omori E V, Satyapertiwi D, Ramel M C, et al. Photoswitchable gRNAs for spatiotemporally controlled crisprcas- based genomic regulation. ACS Central Science, 2020, 6:695-703.
doi: 10.1021/acscentsci.9b01093 pmid: 32490186
[15] Zhang Y, Ling X, Su X, et al. Optical control of a CRISPR/Cas 9 system for gene editing by using photolabile crRNA. Angewandte Chemie International Edition, 2020, 59(47):20895-20899.
[16] Aksoy Y A, Yang B, Chen W, et al. Spatial and temporal control of CRISPR-Cas9-mediated gene editing delivered via a Light-Triggered liposome system. ACS Applied Materials and Interfaces, 2020, 12(47):52433-52444.
doi: 10.1021/acsami.0c16380
[17] Nihongaki Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nature Biotechnology, 2015, 33(7):755-760.
doi: 10.1038/nbt.3245 pmid: 26076431
[18] Yu Y, Wu X, Guan N, et al. Engineering a far-red light-activated split-Cas 9 system for remote-controlled genome editing of internal organs and tumors. Science Advances, 2020, 6(28):1777.
[19] Hemphill J, Borchardt E K, Brown K, et al. Optical control of CRISPR/Cas 9 gene editing. Journal of the American Chemical Society, 2015, 137(17):5642-5645.
doi: 10.1021/ja512664v pmid: 25905628
[20] Liu Y, Zou R S, He S, et al. Very fast CRISPR on damond. Science, 2020, 368(6496):1265-1269.
doi: 10.1126/science.aay8204
[21] Zhou W, Brown W, Bardhan A, et al. Spatiotemporal control of CRISPR/Cas9 function in cells and zebrafish using light- activated guide RNA. Cold Spring Harbor Laboratory, 2020, 59(23):8998-9003.
[22] Bryan C R, Colin K K, Patrick M, et al. The hidden land use cost of upscaling cover crops. Communications Biology, 2020, 11(1):5041.
[23] Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system:A new-fangled dawn in gene editing. Life Sciences, 2019, 232(1):116636.
doi: 10.1016/j.lfs.2019.116636
[24] Scott M P, Cindy A H, Brian C S, et al. A noncanonical hippo pathway regulates spindle disassembly and cytokinesis during meiosis in saccharomyces cerevisiae. Genetics, 2020, 66(3):447-462.
[25] Kent A R, Austin E G, Emily A W, et al. Dynamic temperature- sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation. RNA, 2018, 24:1481-1495.
doi: 10.1261/rna.066522.118
[26] 许丽, 王玥, 姚驰远, 等. 基因编辑技术发展态势分析与建议. 中国生物工程杂志, 2018, 38(12):113-122.
[27] 任俊, 曹跃炫, 黄勇, 等. 基因编辑技术及其水稻中的发展和应用. 中国稻米, 2021, 27(4):92-100.
[28] 孙立方, 徐建国, 柯甫志. 基因编辑技术在柑橘中的应用研究进展. 中国果树, 2021(6):1-6.
[29] 王娟, 王柏, 柯李宁, 等. 基因编辑技术在番茄育种中的应用进展. 植物生理学报, 2020, 56(12):2606-2616.
[30] 张爱萍, 刘江娜, 闫建俊, 等. 番茄基因编辑研究进展和前景. 园艺学报, 2022, 49(1):221-232.
doi: 10.16420/j.issn.0513-353x.2020-0976
[31] 杨梦冰, 江易林, 祝蕾, 等. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用. 中国生物工程杂志, 2021, 41(12):4-12.
[32] 朱丽珍, 王芳, 王娅丽, 等. 基因编辑技术及CRISPR/Cas系统在草地植物开发中的应用. 江苏农业科学, 2021, 49(20):22-30.
[33] 郞雅琴, 翟晓巧. CRISPR/Cas9系统在木本植物中的应用现状. 河南林业科技, 2021, 41(3):22-25.
[34] 于红, 刘欣, 李琪. 基因编辑技术在贝类中的应用进展与展望. 水产学报, 2022, 46(4):636-643.
[35] 孙佳彤, 国艳娇, 李爽, 等. 基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究. 南京林业大学学报(自然科学版), 2021, 45(6):15-23.
[36] 乔幸, 安然, 陈娜娜, 等. 利用CRISPR/Cas9技术创制早熟甘蓝型油菜材料. 四川农业大学学报, 2021, 39(6):729-733,765.
[37] 王志, 潘启华, 陆可, 等. 青鳉抗病毒感染过程的负调控因子jun的鉴定. 华中农业大学学报, 2021, 40(6):152-160.
[38] 陶彬彬, 胡炜. 鱼类性别控制育种研究进展. 中国农业科技导报, 2022, 24(2):1-10.
doi: 10.13304/j.nykjdb.2021.0582
[39] 史玉洁, 李芳, 王昕. CRISPR技术应用于山羊和绵羊育种的研究进展. 中国畜牧杂志, 2022, 58(4):16-21.
[40] 房元杰, 张晓爱, 魏文康, 等. CRISPR-Cas9技术原理及其在猪的应用研究新进展. 现代畜牧兽医, 2021(11):92-96.
[41] 高嫦娥. PD-1基因敲除T细胞治疗结直肠癌的有效性及其体内安全性评价的临床研究. 昆明:昆明医科大学, 2020.
[42] 滕元姬, 陈志鸿. 基因编辑技术CRISPR/Cas9系统与宫颈癌相关性的研究进展. 右江医学, 2021, 49(10):762-765.
[43] Duan J L, Bao C J, Xie Y, et al. Targeted core-shell nanoparticles for precise CTCF gene insert in treatment of metastatic breast cancer. Bioactive Materials, 2021, 11:1-14.
doi: 10.1016/j.bioactmat.2021.10.007
[44] 高欣, 柳羽哲, 江泽沅, 等. 合成生物学构建微生物工程菌研究进展. 食品科学, 2022, 43(15):256-264.
[45] 乔怡, 张庆林, 陈单丹, 等. CRISPR/Cas9 基因编辑系统在获取放线菌天然产物中的应用. 有机化学, 2021, 41(11):4279-4288.
[46] 刘笑天, 仇昊, 田莉, 等. CRISPR/Cas9 基因编辑系统在食药用真菌中的研究进展. 生物技术通报, 2021, 37(11):42-51.
[47] 于淑颖, 周梦兰, 孙天舒, 等. CRISPR/Cas9基因编辑技术在念珠菌中的应用研究进展. 中国真菌学杂志, 2021, 16(4):274-278.
[48] 邓名, 丁俊美. CRISPR/Cas9基因编辑技术在微生物细胞中的应用研究进展. 应用与环境生物学报, 2022, 28(3):787-795.
[49] 程文焕, 伏广好, 陈晓妮, 等. 基因编辑技术在工业微生物育种中的应用进展. 发酵科技通讯, 2021, 49(4):236-242.
[50] Sinha S, Barbosa K, Cheng K Y, et al. A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas 9 genome editing. Nature Communications, 2021, 12(1):6512-6512.
doi: 10.1038/s41467-021-26788-6
[51] Wang S, Li H, Kou Z, et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system. Clinical Microbiology and Infection, 2020, 27:443-450.
doi: 10.1016/j.cmi.2020.04.018
[52] Moon J, Kwon H J, Yong D, et al. Colorimetric detection of SARS-CoV-2 and drug-resistant pH1N1 using CRISPR/dCas9. ACS Sensors, 2020, 5(12):4017-4026.
doi: 10.1021/acssensors.0c01929 pmid: 33270431
[53] Cunningham C H, Hennelly C M, Lin J T, et al. A novel CRISPR-based malaria diagnostic capable of plasmodium detection,speciation,and drug-resistance genotyping. EBioMedicine, 2020, 68:103415.
doi: 10.1016/j.ebiom.2021.103415
[54] Lee R A, Puig H D, Nguyen P Q, et al. Ultrasensitive CRISPR- based diagnostic for field-applicable detection of plasmodium species in symptomatic and asymptomatic malaria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41):25722-25731.
[55] Abudayyeh O O, Gootenberg J S, Kellner M J, et al. Nucleic acid detection of plant genes using CRISPR-Cas13. CRISPR Journal, 2019, 2(3):165-171.
doi: 10.1089/crispr.2019.0011
[56] Huang D, Qian J J, Shi Z W, et al. CRISPR-Cas12a-assisted multicolor biosensor for semiquantitative point-of-use testing of the nopaline synthase terminator in genetically modified crops by unaided eyes. ACS Synthetic Biology, 2020, 9(11):3114-3123.
doi: 10.1021/acssynbio.0c00365 pmid: 33047952
[57] 谢宇宙, 付伟, 闫超杰, 等. 基于CRISPR/Cas原理的转基因产品检测技术研究进展. 生物技术进展, 2021, 11(4):430-437.
doi: 10.19586/j.2095-2341.2021.0083
[58] 王紫怡, 黄迪, 徐颖华, 等. CRISPR核酸检测技术的研究进展. 食品安全质量检测学报, 2021, 12(17):6711-6719.
[59] 李东巧, 杨艳萍. 作物基因组编辑技术国际发展态势分析. 中国科学: 生命科学, 2019, 49(2):179-190.
[60] 王维佳, 李萌鑫. 基因编辑技术在农业育种中的应用. 安徽农业科学, 2020, 48(3):18-25.
[61] Zhang H W, Li J, Zhao S B, et al. An editing-site-specific PCR method for detection and quantification of CAO1-edited rice. Foods, 2021, 10(6):1209-1213.
doi: 10.3390/foods10061209
[62] Chhalliyil P, Ilves H, Kazakov S A, et al. Real-time quantitative PCR method specific for detection and quantification of the first commercialized genome-edited plant. Foods, 2020, 9(9):1245.
doi: 10.3390/foods9091245
[63] South Korea promotes the first genome-edited food crop.(2021-09-02)[2023-02-22]. https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=18302.
[64] Japan begins sale of genome-edited "Madai" red sea bream.(2021-10-20)[2023-02-22]. https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=19061.
[65] FDA clears marketing of genome-edited beef cattle.(2022-03-16)[2023-02-22]. https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=19325.
[66] Belgium grants permits for new field trials of 3 genome-edited maize.(2022-04-27)[2023-02-22]. https://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=19429.
[67] Roseville M N. Calyxt’s high oleic low linolenic soybean deemed non-regulated by USDA.(2020-06-03)[2023-02-22]. https://calyxt.com/calyxts-high-oleic-low-linolenic-soybean-deemed-non-regulated-by-usda/.
[68] 柴迎锦. cyaA基因对绵羊肺源肠外致病大肠杆菌XJ10毒力的影响研究. 石河子:石河子大学, 2020.
[69] 顾鸢. 基因编辑技术育种产业的发展与机遇. 农经, 2021(4):31-35.
[70] 袁珊, 韩天富. 拉美转基因监管政策. 大豆科技, 2019(4):66-67.
[71] Peng C, Wang H, Xu X L, et al. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction. The Plant Journal, 2018, 95(3):557-567.
doi: 10.1111/tpj.13961 pmid: 29761864
[72] 王梦雨, 王颢潜, 王旭静, 等. 基因编辑产品检测技术研究进展. 生物技术进展, 2021, 11(4):438-445.
[73] 陈怡李, 姚书忠. CRISPR/Cas9基因编辑技术的应用研究进展. 国际生殖健康/计划生育杂志, 2017, 36(6):482-487.
[74] 雷婷, 肖斌, 何咏茵, 等. CRISPR/Cas9文库筛选技术的发展及在肿瘤研究中的应用. 南方医科大学学报, 2019, 39(11):1381-1386.
[75] 彭耀进, 周琪. 应对生物技术变革与伦理新挑战的中国方略. 中国科学院院刊, 2021, 36(11):1288-1297.
[1] Liu Yu, Cao Jialin, Xiao Zhengwu, Zhang Mingyu, Chen Jia’na, Cao Fangbo, Huang Min. Effects of Nitrogen Application Rates on Yield and Nitrogen Use Efficiency of Super Hybrid Rice Y-liangyou 900 [J]. Crops, 2023, 39(2): 126-130.
[2] Liang Ping, Zhang Yongqing, Zhang Meng, Xue Xiaojiao, Li Pingping, Zhang Wenyan, Wang Dan, Zhao Gang. Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress [J]. Crops, 2023, 39(2): 178-185.
[3] Li Wenshan, Zhang Junyao, Tang Jianghua, Xu Wenxiu, Xu Qinghua. Effects of Different Doses of AFD on Growth and Yield of Cotton [J]. Crops, 2023, 39(1): 158-162.
[4] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Nitrogen Application Rate on Yield and Quality of Weak Gluten Wheat in Northern Winter Wheat Region [J]. Crops, 2023, 39(1): 163-169.
[5] Wu Zishuai, Liu Guanglin, Li Hu, Luo Qunchang, Chen Chuanhua, Zhu Qi’nan. Effects of Nitrogen Application Rate on Rice Quality of High Quality Conventional Indica Rice [J]. Crops, 2023, 39(1): 84-88.
[6] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[7] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
[8] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[9] Zhang Xi, Xie Jin, Huang Hao, Gao Renji, Lu Chao, Zhou Yilin, Liang Zengfa, Wang Wei. Effects of Nitrogen Fertilizer Operation and Plant Spacing on Yield and Quality of Yunyan 116 in Pu’er Tobacco Area [J]. Crops, 2022, 38(5): 188-194.
[10] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[11] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[12] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[13] Chen Yuzhen, Tang Guangbin, Ma Xianxin, Tian Guiyun, Yu Hongxin, Luo Yingluo, Fan Mingshou, Jia Liguo. Four Major Regulatory Pathways of Potato Tuber Development [J]. Crops, 2022, 38(4): 9-13.
[14] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[15] Du Haimeng, Wei Huanhe, Yu Qingyuan, Dai Qigen. Application Progress and Prospect of Rice Foliar Fertilizer [J]. Crops, 2022, 38(3): 33-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!