Crops ›› 2023, Vol. 39 ›› Issue (3): 159-166.doi: 10.16035/j.issn.1001-7283.2023.03.022

Previous Articles     Next Articles

Relationships between Tiller Dynamic, Earbearing Tiller Rate and Yield of Double Cropping Rice under Elevated Temperature and CO2 Concentration

Song Chunyan1(), Wan Yunfan1, Li Yu’e1, Cai Andong1, Hu Yanyan2, Zhou Hui2, Zhu Bo2, Wang Bin1()   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences/Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agriculture, Yangtze University, Jingzhou 434022, Hubei, China
  • Received:2022-02-17 Revised:2022-06-06 Online:2023-06-15 Published:2023-06-16

Abstract:

In order to clarify the variation of tiller dynamic and earbearing tiller rate of Chinese double cropping rice under climate change and their relationship with yield formation, a field experiment was conducted using open-top chambers (OTC) to simulate different scenarios of elevated temperature and/or CO2 concentration for four rotations of double rice. There were four treatments, CK, ET (OTC with 2℃ temperature elevation), EC (OTC with 60μmol/mol CO2 elevation), ETEC (OTC with simultaneous 2℃ temperature and 60μmol/mol CO2 elevation). The characteristics of tiller dynamic, earbearing tiller rate and their effect on rice yield were explored. The results showed that rice tiller reached the peak then partially declined with the increase of cumulative radiation and growth degree-day (GDD), and the tiller growth/extinction rate in early rice was higher than that in late rice. Compared with CK, ET, EC and ETEC treatments in early rice increased number of maximum tiller and invalid tiller by 3.6%-14.2% and 8.9%-134.2%, respectively, and decreased earbearing tiller rate by 0.4%- 9.3%, which had negative effect on yield formation. In late rice, ET, EC and ETEC treatments increased maximum tiller number and ear bearing tiller rate by 2.9%-13.1% and 1.7%-22.1%, respectively, and decreased ineffective tiller number by 1.6%-64.8%, which contributed to the increase in yield. ETEC treatment showed a positive synergy on the promotion of maximum tiller, while their interaction on ineffective tiller number and earbearing tiller rate was not significant. Generally, elevated temperature and CO2 concentration had a negative effect on tillering and earbearing for early rice, while had a positive effect for late rice. Under the background of future climate change, it was of great significance to promote rice tiller development, control ineffective tiller and increase earbearing tiller rate for stable and high yield output.

Key words: Double cropping rice, CO2 concentration, Temperature, Tiller, Earbearing tiller rate, Yield

Table 1

Fertilization scheme of early rice and late rice kg/hm2"

养分
Nutrient
总量
Total
amount
基肥
Basal
fertilizer
分蘖肥
Tiller
fertilizer
穗肥
Panicle
fertilizer
N 180 90 45 45
P2O5 60 60 0 0
K2O 90 30 15 45

Fig.1

Relationships between tiller number and cumulative radiation, GDD of double cropping rice under elevated temperature and CO2 concentration y1: ambient CO2 concentration; y2: elevated CO2 concentration"

Table 2

Multi-way ANOVA of probable significances between elevated temperature, CO2 concentration and year on tillering, earbearing and yield of double cropping rice (P values)"

指标
Indicator
早稻Early rice 晚稻Late rice
最大分蘖数
Maximum tiller
number
无效分蘖数
Invalid tiller
number
有效穗数
Productive
ear number
成穗率
Earbearing tiller rate
产量
Yield
最大分蘖数
Maximum tiller
number
无效分蘖数
Invalid tiller
number
有效穗数
Productive
ear number
成穗率
Earbearing tiller rate
产量
Yield
温度Tepmerature (T) <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 0.05 <0.01 <0.01 <0.01
CO2 <0.01 0.79 <0.01 0.80 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
年Year <0.01 0.35 <0.01 0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
T×CO2 0.33 0.65 <0.05 0.35 <0.01 <0.05 0.82 0.47 0.38 <0.05
T×Year 0.79 0.62 0.68 0.85 0.08 0.65 <0.01 <0.05 <0.01 0.18
CO2×Year 0.91 <0.05 0.36 0.31 0.15 0.32 0.12 0.53 0.12 0.53
T×CO2×Year 0.93 0.65 0.83 0.90 0.37 0.53 0.89 0.60 0.81 0.21

Fig.2

Maximum tiller number of double cropping rice under elevated temperature and CO2 concentration Different letters mean significant differences at P < 0.05, error bars represent standard error of three replicates, the same below"

Fig.3

Invalid tiller number of double cropping rice under elevated temperature and CO2 concentration"

Fig.4

Effects of elevated temperature and CO2 concentration on productive ear number, earbearing tiller rate, and yield of double cropping rice"

Fig.5

Structural equation models for the plausible effects of maximum tiller number and earbearing tiller rate on yield of double cropping rice under elevated temperature and CO2 concentration Red and blue arrows show positive and negative effects, respectively. The solid line indicates that the influence has passed the significance test (P < 0.05), and the dotted line indicates that there is no significant influence. The numbers next to the arrows is the standardized path coefficient, and the numbers next to the boxes in bold is the proportion of the variable that can be explained by the SEM model. The data used in the model are from 2013 to 2016 (n=48)"

[1] 赵宗慈, 罗勇, 黄建斌. 回顾IPCC30年(1988-2018年). 气候变化研究进展, 2018, 14(5):540-546.
[2] 熊伟, 杨婕, 吴文斌, 等. 中国水稻生产对历史气候变化的敏感性和脆弱性. 生态学报, 2013, 33(2):509-518.
[3] 虞国平. 水稻在我国粮食安全中的战略地位分析. 新西部, 2009(22):31-33.
[4] 李建平, 李俊杰, 李文娟, 等. “十四五”期间我国水稻增产潜力与实现路径. 农业经济问题, 2021(7):25-37.
[5] 黄英金, 罗永锋, 黄兴作, 等. 水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系. 中国水稻科学, 1999, 13(4):205-210.
[6] 李敏, 马均, 傅泰露, 等. 大田生长期全程高温胁迫对杂交水稻生育后期生长发育及产量形成的影响. 杂交水稻, 2009, 24(4):65-71.
[7] 张明静, 韩笑, 胡雪, 等. 不同种植方式下温度升高对水稻产量及同化物转运的影响. 中国农业科学, 2021, 54(7):1537- 1552.
doi: 10.3864/j.issn.0578-1752.2021.07.017
[8] Zhao C, Liu B, Piao S, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35):9326-9331.
[9] 魏金连, 潘晓华, 邓强辉. 不同生育阶段夜温升高对双季水稻产量的影响. 应用生态学报, 2010, 21(2):331-337.
[10] 黄建晔, 董桂春, 杨洪建, 等. 开放式空气CO2增高对水稻物质生产与分配的影响. 应用生态学报, 2003, 14(2):253-257.
[11] 蔡威威, 艾天成, 万运帆, 等. 环境温度和CO2浓度升高对湖北早稻氮素含量及产量的影响. 中国农业气象, 2016, 37(2):231-237.
[12] Kim H Y, Lieffering M, Kobayashi K, et al. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research, 2003, 83(3):261-270.
doi: 10.1016/S0378-4290(03)00076-5
[13] Woodwell G M. The warming of the industrialized middle latitudes 1985-2050: Causes and consequences. Climatic Change, 1989, 15(1/2):31-50.
doi: 10.1007/BF00138844
[14] 景立权, 赖上坤, 王云霞, 等. 大气CO2浓度和温度互作对水稻生长发育的影响. 生态学报, 2016, 36(14):4254-4265.
[15] Yun S I, Kang B M, Lim S S, et al. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated [CO2]. Agricultural and Forest Meteorology, 2012, 154/155:75-83.
doi: 10.1016/j.agrformet.2011.10.011
[16] Ziska L H, Namuco O, Moya T, et al. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal, 1997, 89(1):45-53.
doi: 10.2134/agronj1997.00021962008900010007x
[17] 袁嫚嫚, 朱建国, 孙义祥, 等. 大气CO2浓度和温度升高对水稻籽粒充实度的影响. 农业环境科学学报, 2019, 38(10):2251-2262.
[18] 王萌萌, 杨沈斌, 江晓东, 等. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟. 作物学报, 2016, 42(1):82-92.
[19] 黄建晔, 杨洪建, 董桂春, 等. 开放式空气CO2浓度增高对水稻产量形成的影响. 应用生态学报, 2002, 13(10):1210-1214.
[20] 何帅奇. 自由大气CO2浓度与温度升高对水稻干物质分配及产量构成因素的影响. 南京:南京农业大学, 2014.
[21] Baker J T, Allen L H, Boote, et al. Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science, 1990, 115:313-320.
[22] Imai K, Coleman D F, Yanagisawa T, et al. Increase of atmospheric partial pressure of carbon dioxide and growth and yield of rice. Japanese Journal of Crop Science, 1985, 54(4):413- 418.
doi: 10.1626/jcs.54.413
[23] Yang L, Liu H, Wang Y, et al. Yield formation of CO2 enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate. Agriculture Ecosystems & Environment, 2009, 129(1/2/3):193-200.
doi: 10.1016/j.agee.2008.08.016
[24] Liu H J, Yang L X, Wang Y L, et al. Yield formation of CO2 enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Research, 2008, 108(1):93-100.
doi: 10.1016/j.fcr.2008.03.007
[25] Cheng W G, Sakai H, Yagi K, et al. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology, 2009, 149(1):51-58.
doi: 10.1016/j.agrformet.2008.07.006
[26] Baker J T, Allen L H, Boote K J, et al. Response of rice to carbon dioxide and temperature. Agricultural and Forest Meteorology, 1992, 60(3/4):153-166.
doi: 10.1016/0168-1923(92)90035-3
[27] Han Y K, Horie T, Nakagawa H, et al. Effects of elevated CO2 concentration and high temperature on growth and yield of rice : II. The effect on yield and its components of Akihikari rice. Japanese Journal of Crop Science, 1996, 65(4):644-651.
doi: 10.1626/jcs.65.644
[28] 马娉, 李如楠, 王斌, 等. 双季稻不同生育期净同化速率对大气CO2浓度和温度升高的响应. 应用生态学报, 2020, 31(3):872-882.
doi: 10.13287/j.1001-9332.202003.029
[29] Wang B, Li J L, Wan Y F, et al. Variable effects of 2°C air warming on yield formation under elevated [CO2] in a Chinese double rice cropping system. Agricultural and Forest Meteorology, 2019, 278:107662.
doi: 10.1016/j.agrformet.2019.107662
[30] Kang S Z, Liang Z S, Pan Y H, et al. Alternate furrow irrigation for maize production in an arid area. Agricultural Water Management, 2000, 45(3):267-274.
doi: 10.1016/S0378-3774(00)00072-X
[31] Matsushima S, Tsunoda K. Analysis of developmental factors determining yield and its application to yield prediction and culture improvement of lowland rice. Effects of temperature and its daily rang in different growth-stages upon the growth,grain yield and its constitutional factors in rice plants. Proceedings of the Crop Science Society of Japan, 1958, 26(4):243-244.
[32] 李景蕻, 李刚华, 杨从党, 等. 增加土壤温度对高海拔生态区水稻分蘖成穗及产量形成的影响. 中国水稻科学, 2010, 24(1):36-42.
doi: 10.3969/j.issn.1001-7216.2010.01.07
[33] Martinez-Eixarch M, Mdm C, Tomàs N, et al. Tillering and yield formation of a temperate Japonica rice cultivar in a Mediterranean rice agrosystem. Spanish Journal of Agricultural Research, 2015, 13(4):e0905.
doi: 10.5424/sjar/2015134-7085
[34] 凌启鸿, 苏祖芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995, 21(4):463-469.
[35] Yang L X, Huang J Y, Yang H J, et al. The impact of free-air CO2enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research, 2006, 98(2/3):141-150.
doi: 10.1016/j.fcr.2005.12.014
[1] Yuan Shuai, Chen Jiwang, Chen Pingping, Yi Zhenxie. Response of Yield and Cd Accumulation and Distribution in Main Crop and Ratooning Rice of Xiangzaoxian 45 to Irrigation Methods [J]. Crops, 2023, 39(3): 101-108.
[2] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[3] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[4] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[5] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[6] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[7] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
[8] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[9] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[10] Shao Yang, Guo Yanping, Min Gengmei, Yang Xiaoming. Effects of Different Functional Herbicides on the Growth of Broad Bean and Field Weeds [J]. Crops, 2023, 39(3): 254-259.
[11] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[12] Li Jing, Li Pengcheng, He Yongbin, Xing Yaling, Meng Fanhua, Zhou Qian, Nan Ming. Multivariate Analysis and Comprehensive Evaluation of Main Characteristics of 16 Russian Winter Wheat Varieties [J]. Crops, 2023, 39(3): 58-65.
[13] Gao Zhenxian, Cao Qiao, Shan Zilong, Fu Xiaoyi, Han Ran, He Mingqi, Shi Zhanliang, Zheng Shusong. Preliminary Study on the Influence of Late Spring Coldness on 323 Winter Wheat Germplasm Resources [J]. Crops, 2023, 39(3): 86-93.
[14] Wei Yunfei, Li Meng, Ji Xin, Liu Juan, Wang Fujuan, Liu Qiuyuan. Effects of Different Tillage and Sowing Methods on the Growth and Yield of Direct-Seeding Rice under Full Returning of Straw [J]. Crops, 2023, 39(3): 94-100.
[15] Yang Shiqi, Chen Liming, Zhou Yanzhi, Tan Xueming, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Zeng Yanhua. Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice [J]. Crops, 2023, 39(2): 121-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!