Crops ›› 2023, Vol. 39 ›› Issue (3): 167-174.doi: 10.16035/j.issn.1001-7283.2023.03.023

Previous Articles     Next Articles

Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain

Chang Qing(), Li Lijun(), Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao   

  1. Agricultural College of Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2021-09-22 Revised:2022-01-16 Online:2023-06-15 Published:2023-06-16

Abstract:

In order to explore the effects of forage maize-rape intercropping model and nitrogen application level on forage yield and nitrogen absorption and utilization, and to clarify the yield advantages of forage maize-rape intercropping and the characteristics of nitrogen absorption and utilization of crops, forage maize Yidan 76 and forage rape Siyou 2 were used as materials in 2019 and 2020. Fertilization factors included no nitrogen application (N0), 120kg/ha (N1) and 210kg/ha (N2) fertilization levels. The results showed that forage maize-rape intercropping had yield advantage, and the land equivalent ratio was 1.08 to 1.14. Forage maize played a leading role in the competition in intercropping at harvest stage, and the addition of nitrogen fertilizer strengthened this advantage. Fertilization increased the nitrogen uptake of intercropping, and the nitrogen use efficiency of intercropping was significantly higher than that of monoculture. Although the yield and nitrogen uptake of intercropping were the highest under N2 treatment, except for the nitrogen use efficiency of the intercropping system in 2019, the partial nitrogen productivity and nitrogen use efficiency of the system under N1 treatment were higher than those of N2 treatment, and the Amo and relative crowding coefficients (annual average were 0.092 and 1.160, respectively) were higher than those of N2 (annual average 0.062 and 1.019). Therefore, based on the analysis of forage yield and nitrogen utilization rate, 120kg/ha nitrogen application rate was suitable for the planting of forage rape and maize in Tumed Plain of Inner Mongolia, so as to improve yield and reduce ineffective nitrogen input.

Key words: Forage maize, Forage rape, N application, Nitrogen absorption and utilization

Table 1

2019-2020 biological yield of intercropped maize and rape under different nitrogen levels t/hm2"

处理
Treatment
2019 2020
鲜草产量Fresh grass yield 干草产量Hay yield 鲜草产量Fresh grass yield 干草产量Hay yield
N0IM 63.74±2.88cd 8.18±0.15d 64.88±0.24d 8.23±0.15b
N0SM 57.15±7.44de 7.40±0.04e 58.19±0.61e 7.56±0.09bc
N0IO 47.54±11.06e 5.64±0.09e 36.48±2.93h 4.76±0.18e
N0SO 39.42±1.91f 5.11±0.37f 36.10±1.18h 4.50±0.07e
N1IM 79.40±2.56ab 10.97±0.32ab 79.90±0.18b 11.17±0.19a
N1SM 69.47±5.67bc 9.61±0.57c 68.40±1.10c 8.58±2.30b
N1IO 58.59±1.19de 8.04±0.09d 46.73±1.74fg 5.88±0.09de
N1SO 52.35±5.24de 7.12±0.06e 45.21±0.81g 5.31±0.58de
N2IM 87.05±9.62a 12.19±0.23a 86.14±1.15a 10.01±0.09a
N2SM 78.98±3.42ab 10.89±0.44b 77.88±4.29b 10.65±0.13a
N2IO 58.83±0.65de 9.57±0.09c 49.38±0.92f 6.92±0.14bcd
N2SO 55.07±4.17de 8.53±0.09d 48.76±0.87fg 6.31±0.26cde
施肥Fertilization
N0 51.93±5.90c 6.58±0.16c 48.91±1.24c 6.26±0.12c
N1 64.95±3.70b 8.94±0.26b 60.06±0.96b 7.74±0.79b
N2 70.00±4.58a 10.29±0.21a 65.54±1.80a 8.47±0.16a
种植模式Planting pattern
IM 76.70±5.00a 10.44±0.23a 76.97±0.53a 9.80±0.15a
SM 68.50±5.70b 9.29±0.35b 68.16±2.00b 8.93±0.84b
IO 54.97±4.30c 7.75±0.09c 44.20±1.86c 5.86±0.14c
SO 48.90±3.90d 6.92±0.17d 43.35±0.95c 5.37±0.30c
种植模式Planting pattern (P) 75.80** 515.77** 1423.03** 187.11**
施肥Fertilization (F) 54.72** 977.93** 470.86** 77.09**
P×F 1.40* 2.48ns 9.97** 3.68**

Fig.1

LER of intercropping crops under different treatments in 2019-2020 Different lowercase letters indicate significant differences among treatments (P < 0.05)"

Table 2

Nitrogen content and uptake rate of above-ground parts of intercropping crops under different nitrogen rates in 2019-2020"

处理
Treatment
2019 2020
氮素含量
Nitrogen content (%)
吸氮量
Nitrogen uptake rate (kg/hm2)
氮素含量
Nitrogen content (%)
吸氮量
Nitrogen uptake rate (kg/hm2)
N0IM 2.068±0.095f 169.137±5.305g 2.054±0.076c 167.740±7.657d
N0SM 1.862±0.159fg 137.896±12.476h 1.703±0.116de 128.056±7.514e
N0IO 1.615±0.090hi 82.432±8.029i 1.067±0.126g 51.152±6.936i
N0SO 1.477±0.094i 75.484±5.282j 1.278±0.181fg 58.009±8.740hi
N1IM 2.428±0.255ab 266.945±30.055b 2.512±0.226ab 279.822±20.988b
N1SM 2.141±0.499d 206.085±52.068e 2.011±0.279cd 193.248±21.709d
N1IO 2.000±0.072bc 136.884±7.061d 1.417±0.078ef 82.808±5.669gh
N1SO 1.792±0.125e 127.600±8.570f 1.598±0.162ef 84.959±10.494fgh
N2IM 2.616±0.245a 318.875±26.263a 2.715±0.118a 330.323±16.371a
N2SM 2.291±0.279cd 247.585±16.432c 2.251±0.247bc 240.672±23.840c
N2IO 2.110±0.200cd 172.978±9.143d 1.610±0.311ef 112.048±24.737ef
N2SO 1.896±0.175e 161.671±13.910f 1.621±0.130ef 99.567±10.161fg
施肥Fertilization
N0 1.716±0.124b 116.237±7.773c 1.525±0.125c 101.239±7.712c
N1 2.015±0.247a 184.378±24.438b 1.884±0.186b 160.209±14.715b
N2 2.153±0.204a 225.277±16.437a 2.049±0.202a 195.653±18.777a
种植模式Planting pattern
IM 2.371±0.198a 251.652±20.541a 2.427±0.140a 259.295±15.006a
SM 2.098±0.312b 197.189±26.992b 1.988±0.214b 187.325±12.448b
IO 1.656±0.124bc 130.765±8.078c 1.364±0.172c 82.003±9.799c
种植模式Planting pattern (P) 20.637** 76.977** 60.923** 179.335**
施肥Fertilization (F) 12.218** 82.102** 24.706** 72.850**
P×F 0.109ns 1.938ns 0.451ns 7.685**

Table 3

Amo and RCC of intercropping system under different nitrogen rates in 2019-2020"

处理
Treatment
Amo RCC
2019 2020 2019 2020
N0 -0.076 0.104 0.998 1.029
N1 0.049 0.135 1.014 1.306
N2 0.027 0.096 1.000 1.038

Table 4

Nitrogen utilization of intercropping crops under different treatments in 2019-2020"

处理
Treatment
2019 2020
氮肥农学效率
AEN (kg/kg)
氮肥偏生产力
PFPN (kg/kg)
氮肥利用率
NER (%)
氮肥农学效率
AEN (kg/kg)
氮肥偏生产力
PFPN (kg/kg)
氮肥利用率
NER (%)
N1IM 60.01±18.48 42.03±1.21a 37.49±13.37 57.55±1.18a 42.83±0.74a 42.96±10.73a
N1SM 47.25±44.91 36.82±2.17b 26.14±24.11 39.15±3.65bc 32.89±8.81b 24.99±11.00b
N1IO 42.34±39.37 30.83±0.34c 20.87±5.66 39.27±14.41bcd 22.55±0.34cd 12.13±4.74c
N1SO 49.55±16.45 27.30±0.22d 19.98±3.96 34.91±7.07bcd 20.35±2.22de 10.33±3.62c
N2IM 51.05±19.39 26.69±0.50d 32.80±5.33 46.57±2.31ab 26.56±0.20bc 35.61±3.89a
N2SM 47.82±15.04 23.84±0.96e 24.03±3.21 43.13±9.18ab 23.32±0.28cd 24.67±4.48b
N2IO 24.72±24.51 20.95±0.20f 7.91±0.46 28.26±7.78cd 15.17±0.32ef 13.34±3.98c
N2SO 34.27±9.88 18.69±0.20g 7.46±1.17 27.74±1.88d 13.82±0.57f 9.10±0.71cd
施肥Fertilization
N1 54.23±5.39a 36.01±5.95a 28.89±5.36a 44.64±8.23a 32.44±5.54a 26.47±9.57a
N2 44.65±3.44a 30.66±4.28b 25.48±7.54a 39.29±4.52b 21.49±1.40b 23.90±8.36a
种植方式Planting pattern
单作Monoculture 45.68±6.19a 35.73±5.54b 22.83±1.97a 37.90±4.57b 24.47±5.98b 19.84±4.40b
间作Intercrop 53.30±5.77a 38.34±1.58a 31.53±3.68a 46.02±6.83a 29.47±7.04a 30.53±6.25a
种植方式Planting pattern (P) 1.255ns 262.899** 7.412** 16.276** 64.883** 34.191**
施肥Fertilization (F) 30.242** 9590.981** 41.860** 299.515** 653.263** 97.800**
P×F 0.495ns 83.975** 2.412ns 5.836** 19.703** 9.860**
[1] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24(4):403-415.
[2] 朱启林, 向蕊, 汤利, 等. 间作对氮调控玉米光合速率和光合氮利用效率的影响. 植物生态学报, 2018, 42(6):672-680.
doi: 10.17521/cjpe.2018.0033
[3] 唐明明, 董楠, 包兴国, 等. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响. 中国农业大学学报, 2015, 20(5):48-56.
[4] 黄宗昌, 师尚礼, 汪睿, 等. 不同饲草作物间作模式对地上生物量及竞争力的影响. 草业科学, 2020, 37(11):2284-2292.
[5] 李隆, 李晓林, 张福锁, 等. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6(2):140-146.
[6] 孙建好, 李隆, 张福锁, 等. 不同施氮水平对小麦/玉米间作产量和水分效应的影响. 中国农学通报, 2007, 23(7):345-348.
[7] 王洪超, 刘大森, 刘春龙, 等. 饲料油菜及其饲用价值研究进展. 土壤与作物, 2016, 5(1):60-64.
[8] 杨华, 熊明清, 余陵峰, 等. 青贮饲料油菜对肉牛增重效果的研究. 中国饲料, 2017(2):16-18.
[9] 邱玉朗, 罗斌, 于维, 等. 发酵全混合日粮对肉羊生长性能与血液生化指标的影响. 饲料研究, 2013(12):46-48.
[10] 王亚犁. 饲用油菜与枯黄玉米秸秆复合青贮饲喂滩羊试验. 中国畜牧杂志, 2005(2):59.
[11] 叶优良, 孙建好, 李隆, 等. 小麦/玉米间作根系相互作用对氮素吸收和土壤硝态氮含量的影响. 农业工程学报, 2005(11):41-45.
[12] 赵胜利, 龙光强, 杨超, 等. 施氮对玉米//马铃薯间作作物氮累积和分配的影响. 云南农业大学学报(自然科学), 2016, 31(5):886-894.
[13] 李志贤, 陈章, 陈国梁, 等. 镉富集植物油菜与玉米间作对玉米吸收积累镉的影响. 生态学杂志, 2016, 35(1):26-31.
[14] 夏海勇, 赵建华, 孙建好, 等. 油菜、蚕豆、鹰嘴豆和大豆对间作玉米籽粒Fe,Mn,Cu和Zn浓度及地上部累积量的影响. 中国科学:生命科学, 2013, 43(7):557-568.
[15] 余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响. 植物营养与肥料学报, 2009, 15(1):1-8.
[16] 钱欣. 东北地区西部燕麦带状间作模式构建及氮素利用机制研究. 北京: 中国农业大学, 2017.
[17] 渠佳慧. 燕麦与箭筈豌豆不同行比例间作对饲草产质量及土壤性状的影响. 呼和浩特:内蒙古农业大学, 2017.
[18] 卢秉林, 包兴国, 张久东, 等. 间作绿肥饲草与减施氮肥对河西绿洲灌区玉米产量和土壤肥力的影响. 干旱地区农业研究, 2015, 33(2):170-175.
[19] 雍太文, 杨文钰, 任万军, 等. 两种三熟套作体系中的氮素转移及吸收利用. 中国农业科学, 2009, 42(9):3170-3178.
doi: 10.3864/j.issn.0578-1752.2009.09.019
[20] 任媛媛, 王志梁, 王小林, 等. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制. 生态学报, 2015, 35(12):4168-4177.
[21] 刘亚男, 来兴发, 杨倩, 等. 控水对饲草作物间作群体产量、根冠比及水分利用效率的影响. 应用生态学报, 2020, 31(1):113-121.
doi: 10.13287/j.1001-9332.202001.008
[22] 林洪鑫, 潘晓华, 袁展汽, 等. 施氮和木薯-花生间作对木薯养分积累和系统养分利用的影响. 中国农业科学, 2018, 51(17):3275-3290.
doi: 10.3864/j.issn.0578-1752.2018.17.004
[23] 王庆宇, 李立军, 阮慧, 等. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响. 干旱地区农业研究, 2019, 37(2):179-184.
[24] 黄田田. 饲用油菜高丹草间作结合施肥对饲草产质量及土壤有机碳组分的影响. 呼和浩特:内蒙古农业大学, 2020.
[25] 李隆, 杨思存, 孙建好, 等. 小麦/大豆间作中作物种间的竞争作用和促进作用. 应用生态学报, 1999, 10(2):70-73.
[26] Newman E I, Eason W R, Eissenstat D M, et al. Interactions between plants: the role of mycorrhizae. Mycorrhiza, 1992, 1(2):47-53.
doi: 10.1007/BF00206135
[27] Mead R, Willey R W. The concept of a ‘Land Equivalent Ratio’ and advantages in yields from intercropping. Experimental Agriculture, 1980, 16(3):217-228.
doi: 10.1017/S0014479700010978
[28] 钱欣, 许和水, 葛军勇, 等. 施氮量及间作对燕麦、向日葵生产力及土壤硝态氮累积的影响. 中国农业大学学报, 2018, 23(3):1-9.
[29] 张海星, 常生华, 贾倩民, 等. 禾豆间作与施氮对河西地区青贮玉米产量及水氮利用的影响. 中国土壤与肥料, 2021(3):51-62.
[30] 李隆. 间套作体系豆科作物固氮生态学原理与应用. 北京: 中国农业大学出版社, 2013.
[31] Chai Q, Qin A, Gan Y, et al. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agronomy for Sustainable Development, 2014, 34(2):535-543.
doi: 10.1007/s13593-013-0161-x
[32] Islam M, Akhteruzzaman M, Alom M. Optimization of fertilizer rate based on farmers' practice in potato-hybrid maize relay cropping system. Bangladesh Journal of Agricultural Research, 2014, 39(2):351.
doi: 10.3329/bjar.v39i2.20443
[33] 张桂国, 董树亭, 杨在宾. 苜蓿+玉米间作系统产量表现及其种间竞争力的评定. 草业学报, 2011, 20(1):22-30.
[34] Fan K, Delgado-Baquerizo M, Guo X, et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The International Society for Microbial Ecology Journal, 2021, 15(1):550-561.
[35] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient- use efficiency. Plant and Soil, 2003, 248(1):305-312.
doi: 10.1023/A:1022352229863
[36] Jensen E S, Carlsson G, Hauggaard-Nielsen H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global- scale analysis. Agronomy for Sustainable Development, 2020, 40(5):1-9.
doi: 10.1007/s13593-019-0604-0
[37] 沈其荣, 褚贵新, 曹金留, 等. 从氮素营养的角度分析旱作水稻与花生间作系统的产量优势. 中国农业科学, 2004, 37(8):1177-1182.
[38] 董宛麟, 于洋, 张立祯, 等. 向日葵和马铃薯间作条件下氮素的吸收和利用. 农业工程学报, 2013, 29(7):98-108.
[39] Moore P D. High hopes for C4 plants. Nature, 1994, 367(4):322-323.
[40] Raschke E K. Stomatal action. Annual Review of Plant Physiology, 1975, 26(1):309-340.
doi: 10.1146/arplant.1975.26.issue-1
[41] 张宏, 周建斌, 刘瑞, 等. 不同栽培模式及施氮对半旱地冬小麦/夏玉米氮素累积、分配及氮肥利用率的影响. 植物营养与肥料学报, 2011, 17(1):1-8.
[1] Liu Yu, Cao Jialin, Xiao Zhengwu, Zhang Mingyu, Chen Jia’na, Cao Fangbo, Huang Min. Effects of Nitrogen Application Rates on Yield and Nitrogen Use Efficiency of Super Hybrid Rice Y-liangyou 900 [J]. Crops, 2023, 39(2): 126-130.
[2] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Nitrogen Application Rate on Yield and Quality of Weak Gluten Wheat in Northern Winter Wheat Region [J]. Crops, 2023, 39(1): 163-169.
[3] Wu Zishuai, Liu Guanglin, Li Hu, Luo Qunchang, Chen Chuanhua, Zhu Qi’nan. Effects of Nitrogen Application Rate on Rice Quality of High Quality Conventional Indica Rice [J]. Crops, 2023, 39(1): 84-88.
[4] Zhang Xi, Xie Jin, Huang Hao, Gao Renji, Lu Chao, Zhou Yilin, Liang Zengfa, Wang Wei. Effects of Nitrogen Fertilizer Operation and Plant Spacing on Yield and Quality of Yunyan 116 in Pu’er Tobacco Area [J]. Crops, 2022, 38(5): 188-194.
[5] Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220.
[6] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[7] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[8] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[9] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[10] Wang Qingbin, Lu Jiechun, Peng Chun’e, Meng Hui, Liu Zhiguo, Wang Hongfeng, Zhang Min. Effects of Different Nitrogen Application Rates Combined with Extracts of Paecilomyces variotii (ZNC) on Growth and Nitrogen Uptake of Pakchoi [J]. Crops, 2022, 38(1): 190-195.
[11] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[12] Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71.
[13] Zhang Jiawen, Lu Shaohao, Zhao Mingqin, Zhong Qiu, Wang Jun, Yi Kai, Xiang Huan. Effects of Nitrogen Application Rates on Carbon and Nitrogen Metabolism and Quality of Cigar Leaves in Sichuan [J]. Crops, 2021, 37(4): 159-165.
[14] Zhang Xi, Wang Huifang, Dai Zhuoyi, Xue Gang, Xu Shixiao, Yang Tiezhao. Effects of Genotype, Nitrogen Application Rate and Their Interactions on Polyphenols in Flue-Cured Tobacco [J]. Crops, 2021, 37(3): 84-90.
[15] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!