Crops ›› 2023, Vol. 39 ›› Issue (3): 35-42.doi: 10.16035/j.issn.1001-7283.2023.03.005

Previous Articles     Next Articles

Fingerprint Construction and Genetic Diversity Analysis of Quinoa Based on SSR Markers

Chen Cuiping1,2(), Yan Dianhai1,2, Zhang Shumiao2, Zuo Haonan2, Gao Sen2, Liu Yang1,2()   

  1. 1Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China
    2Xining Sub-Center for New Plant Variety Tests, Ministry of Agriculture and Rural Affairs, Xining 810016, Qinghai, China
  • Received:2021-09-30 Revised:2022-03-01 Online:2023-06-15 Published:2023-06-16

Abstract:

The total of 18 pairs of SSR primers were selected to analyze the genetic diversity of 96 quinoa germplasm materials from different sources, and a DNA fingerprint database was constructed. The results showed that 94 alleles were detected by 18 pairs of SSR primers, and 3-10 alleles were detected each pair of SSR primers. Using 18 pairs of primers, 96 quinoa germplasm materials could be identified. The genetic similarity coefficients varied from 0.55 to 0.98, with an average of 0.77. The 96 quinoa materials were classified into three categories.

Key words: Quinoa, SSR markers, Fingerprint, Genetic diversity

Table 1

The numbers and sources of quinoa materials"

序号
Number
种质编号
Germplasm number
来源
Source
序号
Number
种质编号
Germplasm number
来源
Source
序号
Number
种质编号
Germplasm number
来源
Source
1 BZ-01 中国青海海西 33 BZ-35 中国西藏 65 BZ-68 (W) 中国青海海西
2 BZ-02 中国青海海西 34 BZ-36 中国西藏 66 BZ-68 (P) 中国青海海西
3 BZ-03 中国西藏 35 BZ-37 中国西藏 67 BZ-71 中国西藏
4 BZ-04 中国西藏 36 BZ-38 中国青海海西 68 PB-01 中国西藏
5 BZ-05 中国青海海西 37 BZ-40 中国青海西宁系选 69 PB-02 中国西藏
6 BZ-06 中国青海海西 38 BZ-41 中国青海西宁系选 70 PB-03 中国青海海西
7 BZ-07 中国青海海西 39 BZ-42 中国西藏 71 PB-04 (1) 中国青海海西
8 BZ-08 中国青海海西 40 BZ-43 (W) 中国青海海西 72 PB-04 (2) 中国青海海西
9 BZ-09 中国西藏 41 BZ-43 中国青海海西 73 PB-05 中国青海西宁
10 BZ-10 中国西藏 42 BZ-44 中国青海海西 74 PB-06 中国青海西宁系选
11 BZ-11 中国青海西宁 43 BZ-46 中国青海海西 75 PB-07 中国青海海西
12 BZ-14 中国青海海西 44 BZ-47 中国青海海西 76 y1-1 阿根廷
13 BZ-15 中国青海海西 45 BZ-49 中国青海海西 77 y1-2 阿根廷
14 BZ-16 中国西藏 46 BZ-50 中国青海海西 78 y1-3 阿根廷
15 BZ-18 中国西藏 47 BZ-51 中国青海海西 79 y1-4 阿根廷
16 BZ-19 中国西藏 48 BZ-52 中国青海海西 80 y1-7 阿根廷
17 BZ-20 中国青海西宁 49 BZ-53 中国青海海西 81 y1-8 阿根廷
18 BZ-21 中国青海海西 50 BZ-54 中国甘肃 82 y1-9 阿根廷
19 BZ-22 中国西藏 51 BZ-55 中国甘肃 83 y1-10 阿根廷
20 BZ-23 中国青海海西 52 BZ-56 中国甘肃 84 y1-12 (P) 阿根廷
21 BZ-24 中国青海海西 53 BZ-57 中国青海海西 85 y1-14 阿根廷
22 BZ-25 中国青海西宁 54 BZ-59 中国青海海西 86 y1-15 阿根廷
23 BZ-26 中国青海西宁 55 BZ-61 中国青海西宁系选 87 y1-16 (W) 阿根廷
24 BZ-27 中国青海海西 56 BZ-62 中国青海西宁系选 88 y1-17 阿根廷
25 BZ-28 (Y) 中国青海海西 57 BZ-63 中国青海海西 89 y1-18 阿根廷
26 BZ-28 (P) 中国青海海西 58 BZ-64 中国青海海西 90 y1-19 (P) 阿根廷
27 BZ-29 中国青海海西 59 BZ-65 (W) 中国青海海西 91 y1-19 (W) 阿根廷
28 BZ-30 中国青海西宁系选 60 BZ-65 (P) 中国青海海西 92 y1-20 阿根廷
29 BZ-31 中国青海西宁系选 61 BZ-66 (P) 中国青海海西 93 y1-21 阿根廷
30 BZ-32 中国西藏 62 BZ-66 (W) 中国青海海西 94 y1-24 阿根廷
31 BZ-33 中国青海海西 63 BZ-67 (W) 中国青海海西 95 y1-26 阿根廷
32 BZ-34 中国西藏 64 BZ-67 (P) 中国青海海西 96 y1-27 阿根廷

Table 2

Sequence information of SSR primers"

引物名称Primer name 正向DNA序列Forward DNA sequence 反向DNA序列Reverse DNA sequence
KAAT001 TGGCTATATCATATGCGTAATGTG GGGCTCAGATTGTATCTCGAC
KAAT016 GAGCCCGTGCTACAACTCAT CTGGGCAGAGCAGAACAGAT
KAAT018 GCACCAACCTGAGTCCTAGC CGTGTCGCTGCTCATATTGT
KAAT021 CGGCTCCCTACCAATTTCTT GCCCAATGGTCTTTGACACT
KAAT041 TGGGACTTCCATAAGGCAAC ATATTGCATGTCGAGCACCA
KAAT044 GGGTGGAGGCCCAGATTAT CAGAGCAGAGCTGGCAGAG
KCAA015 TGGTTGGAGGCAAACATACC TGAGGGTGAAGAGGAGGATG
KCAA065 GCCATCCTAGTTGGCGTTT TCTGTCCATTATCAACTTCACCA
KCAA078 AGGCGAGGATAACATGATCG AAGAAGCCATACCTCCCTCAC
KGA010 TGTTTCCTGCGTCCCTATTC GCTGAAGGTGAAATAGGTGGA
KGA038 ATGGACCTCCAATAATCACCA GAGAGAGAAAGAGGAGAGAGAAAGTG
KGA100 TGCAATGTCGAGAATGGCTA CCAACAATCATCATCGTCACA
KGA114 TGTTGAGTGCGCTTTAATGG AATAGGTGTAGCCGCGTAGG
KGA128 TGCTAGGGCTCTACTGAACTCAA CTGGCTGCACTTCCTCTTCT
KGA134 GCGGCTCTGATACCAATGAT TGTCAGCTGTCAAGAGGTTTG
KGA145 CCAGGGTGAATCAGGGAATA CTGGCAGGTGGGTCTTCTAT
KGA156 GGCACACCGAGAGAGAAGAG AGGGCTCGGACAATGAGTTA
BGA200 ACCAGCCACTTTGTCATTAGG GCCATGGTTGATGAATGAGA

Table 3

Amplification results of 18 pairs of SSR primers"

引物名称Primer name 等位基因数Na 观察杂合度Ho 期望杂合度He Shannon多样性指数I 多态信息含量PIC
KAAT001 7 0.21 0.16 0.28 0.26
KAAT016 6 0.23 0.18 0.29 0.24
KAAT018 5 0.29 0.22 0.37 0.34
KAAT021 10 0.17 0.13 0.23 0.20
KAAT041 7 0.24 0.18 0.31 0.26
KAAT044 6 0.16 0.18 0.31 0.27
KCAA015 4 0.41 0.35 0.52 0.32
KCAA065 4 0.48 0.33 0.48 0.36
KCAA078 6 0.36 0.20 0.30 0.19
KGA010 3 0.55 0.31 0.45 0.28
KGA038 5 0.37 0.32 0.47 0.34
KGA100 3 0.52 0.32 0.49 0.38
KGA114 5 0.28 0.19 0.33 0.28
KGA128 5 0.34 0.21 0.32 0.25
KGA134 5 0.44 0.17 0.30 0.21
KGA145 4 0.52 0.29 0.43 0.32
KGA156 6 0.32 0.19 0.30 0.25
BGA200 3 0.50 0.33 0.47 0.34
平均值Mean 5.2 0.36 0.24 0.37 0.28

Fig.1

The results of amplification by KGA145"

Table 4

Fingerprint of some quinoa germplasms"

种质编号
Germplasm number
DNA指纹序列
DNA fingerprint sequence
BZ-08 2-1-2-1-2-1-2-1-2-3-3-2-2-0-2-2-2-2
BZ-18 2-1-1-1-2-1-2-2-2-5-1-2-1-1-1-2-2-1
BZ-19 1-2-2-1-2-1-1-1-2-3-1-2-1-2-1-1-2-1
BZ-22 2-1-1-1-2-1-1-2-2-3-2-2-1-1-2-2-2-1
BZ-26 2-1-2-1-2-1-2-1-2-3-2-1-1-1-2-2-2-1
BZ-29 1-1-3-2-2-1-2-2-2-4-2-1-1-1-1-2-3-1
BZ-32 2-2-2-2-2-2-3-2-2-5-3-2-2-1-2-2-3-1
BZ-33 1-2-1-1-2-1-1-1-2-3-1-1-1-2-2-2-2-1
BZ-34 1-2-1-1-2-1-1-1-1-4-2-2-1-2-2-2-2-1
BZ-40 1-2-2-2-2-2-2-2-1-4-3-3-1-0-2-2-2-1
BZ-42 1-2-1-1-2-1-1-1-3-4-1-1-1-1-2-1-2-1
BZ-46 1-1-2-1-3-1-3-1-2-4-2-2-2-0-1-2-3-1
BZ-47 1-2-1-1-2-1-3-1-2-3-2-1-1-0-3-2-2-1
BZ-57 2-1-2-1-2-1-1-1-2-3-2-1-1-1-1-2-2-1
BZ-59 1-1-2-1-3-2-2-1-2-4-1-1-1-1-1-2-3-2
BZ-62 1-1-2-1-2-2-1-1-2-4-2-1-1-1-1-2-3-1
BZ-63 1-1-1-1-2-1-1-1-2-3-1-1-1-1-2-2-2-1
BZ-64 1-1-1-1-2-1-2-1-2-3-1-1-1-1-1-2-2-1
BZ-65 (P) 1-1-2-2-2-1-1-1-2-5-2-2-2-1-1-2-2-1
BZ-67 (P) 1-1-2-2-2-2-2-1-3-4-2-3-2-2-1-2-2-1
BZ-68 (W) 1-3-2-3-2-2-1-1-2-4-2-2-2-2-3-2-2-1
BZ-68 (P) 2-1-4-1-2-2-3-1-2-4-2-3-2-2-2-2-3-1
BZ-71 1-1-1-1-2-1-2-1-2-3-2-1-1-0-2-2-2-1
PB-02 1-1-2-1-2-1-3-2-2-5-2-2-1-1-1-2-2-1
PB-04 (1) 1-2-1-2-2-1-3-1-2-4-3-2-2-1-2-2-2-1
y1-2 1-1-1-2-2-3-3-2-0-3-2-1-2-1-2-2-2-1
y1-4 1-1-1-1-2-1-2-0-2-3-1-1-1-1-1-2-2-1
y1-7 1-2-1-2-2-1-3-1-2-2-2-1-2-1-1-0-2-1
y1-8 1-1-1-1-2-2-4-1-2-2-2-2-2-1-1-1-2-1
y1-10 1-1-2-1-2-1-2-1-2-4-1-1-1-2-1-1-2-1
y1-14 1-1-1-1-2-1-2-1-2-4-1-1-1-2-1-1-2-1
y1-15 2-1-1-2-3-1-4-2-2-2-1-1-1-2-1-0-2-1
y1-19 (P) 2-1-1-2-2-2-4-1-3-4-2-1-1-2-1-1-2-1
y1-20 1-1-2-1-2-2-2-1-2-5-2-2-2-1-1-1-2-1
y1-24 1-1-2-1-2-1-2-1-1-3-2-1-1-1-1-1-2-1
y1-26 2-1-1-1-2-1-2-1-1-4-2-1-1-1-1-1-2-1

Table 5

Primer combinations for identification of 96 quinoa materials"

种质编号
Germplasm number
引物组合
Primer combination
BZ-01 KAAT001、KAAT021、KAAT041
BZ-02 KAAT041、KAAT021、KGA128
BZ-03 KAAT001、KGA134
BZ-04
KAAT016、KAAT041、KGA010、KGA038、KGA156、KAAT021
BZ-05 KAAT001、KGA145、BGA200、KAAT018
BZ-06 KAAT001、KAAT016、KAAT041、KCAA065
BZ-07 KAAT001、KAAT016、KAAT044、KCAA065
BZ-08 KGA156
BZ-09 KCAA015/KGA114
BZ-10
KAAT016、KCAA015、KAAT021、KCAA065、KGA114
BZ-11
KAAT016、KAAT044、KGA038、KGA128、KGA156、KGA114
BZ-14 KAAT001、KCAA078、KCAA078
BZ-15 KAAT041、KCAA015、KCAA078、KCAA065
BZ-16
KCAA015、KAAT016、KGA038、KGA128、KAAT021
BZ-18 KAAT001
BZ-19 KGA128
BZ-20 KAAT001、KAAT016
BZ-21 KAAT016、KAAT018、KGA134
BZ-22 KGA145
BZ-23
KAAT016、KAAT041、KGA128、KAAT018、KCAA078
BZ-24 KAAT001、KAAT041
BZ-25 KAAT016、KAAT044、KGA145
BZ-26 KAAT001
BZ-27 KGA134、KGA038、KGA134
BZ-28 (Y) KAAT041、KGA128、KGA145、KAAT021
BZ-28 (P)
KAAT041、KGA128、KAAT021、KCAA078、KGA114
BZ-29 KAAT041
BZ-30 KCAA015/KAAT016
BZ-31
KAAT016、KAAT044、KGA038、KGA100、KGA134
BZ-32 KAAT041
BZ-33 KAAT021
BZ-34 KAAT021
BZ-35 KAAT016、KCAA015、KGA038
BZ-36 KAAT001、KAAT044
BZ-37 KAAT001、KAAT016
BZ-38 KAAT001、KGA038
BZ-40 KAAT016
BZ-41 KGA114、KCAA065
BZ-42 KAAT041
BZ-43 (W) KAAT044、KCAA015
BZ-43 KAAT041、KAAT044
BZ-44 KAAT016/KGA156
BZ-46 KAAT041
BZ-47 KGA134
BZ-49 KAAT044、KCAA015
BZ-50 KAAT044、KCAA015、KGA128
BZ-51 KAAT016、KGA010、KGA100、KAAT018
BZ-52 KAAT016、KAAT044、KGA038
BZ-53
KAAT016、KAAT044、KGA128、KAAT018、KAAT018、KGA114
BZ-54 KAAT041、KGA128、KCAA065
BZ-55 KAAT016、KAAT018
BZ-56 KAAT044、KGA128
BZ-57 KAAT001
BZ-59 KGA114
BZ-61 KAAT001、KAAT041、KAAT044、KGA134
BZ-62 KAAT041
BZ-63 KGA128
BZ-64 KAAT041
BZ-65 (W)
KGA128、BGA200、KAAT041、KAAT021、KCAA065
BZ-65 (P) KGA134
BZ-66 (P) KGA100/KAAT021
BZ-66 (W) KGA156/KAAT021/KAAT041
BZ-67 (W) KAAT001/KCAA065
BZ-67 (P) KGA128
BZ-68 (W) KAAT021
BZ-68 (P) KAAT041
BZ-71 KAAT016
PB-01 KAAT016、KCAA015、KAAT018
y1-21 KCAA015、KAAT016、KAAT021
PB-02 KAAT021
PB-03 BGA200/KAAT041
PB-04 (1) KAAT016
PB-05 KAAT001、KGA010、KGA038
PB-06 KCAA015、KAAT016、KGA128、KGA134
PB-07 KGA038、KGA134、KGA145、KCAA078
PB-04(2) KAAT041、KAAT044
y1-1 KAAT001、KAAT044
y1-2 KCAA078
y1-3 KCAA078/KGA134
y1-4 KCAA078
y1-7 KAAT016
y1-8 KGA156
y1-9
KAAT016、KAAT041、KGA128、KGA145、KAAT021
y1-10 KAAT041
y1-12 (P)
KAAT016、KAAT041、KGA010、KGA038、KGA134
y1-14 KAAT021
y1-15 KCAA015
y1-16 (W) KAAT021/KGA128
y1-17 KGA010/KGA156
y1-18 KAAT018/KGA134
y1-19 (P) KGA010
y1-19 (W) KAAT001、KAAT044
y1-20 KCAA065
y1-24 KAAT041
y1-26 KGA134
y1-27 KCAA065/KGA156

Fig.2

Distribution of genetic similarity coefficients"

Fig.3

Cluster analysis of 96 quinoa germplasms"

[1] 石振兴. 国内外藜麦品质分析及其减肥活性研究. 北京: 中国农业科学院, 2016.
[2] 商海军, 蒋丽君, 於春, 等. 藜麦的营养功能及其蛋白和皂苷提取的研究进展. 中国食物与营养, 2021, 27(4):43-48.
[3] 王晨静, 习武, 陆国权, 等. 藜麦特性及开发利用研究进展. 浙江农林大学学报, 2014, 31(2):296-301.
[4] 王黎明, 王宁, 李颂, 等. 藜麦的营养价值及其应用前景. 食品工业科技, 2014, 35(1):381-384,389.
[5] Manjarres-Hernandez E H, Morillo-Coronado A C, Ojeda-Perez Z Z, et al. Characterization of the yield components and selection of materials for breeding programs of quinoa (Chenopodium quinoa Willd.). Euphytica, 2021, 217(6):101.
doi: 10.1007/s10681-021-02837-5
[6] Bazile D, Jacobsen S, Verniau A. The global expansion of quinoa:Trends and limits. Frontiers in Plant Science, 2016, 7:622.
[7] 张崇玺, 贡布扎西, 旺姆. 南美藜(Quinoa)苗期低温冻害试验研究. 西藏农业科技, 1994(4):49-54.
[8] 袁力行, 傅骏骅, Warburton M, 等. 利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究. 遗传学报, 2000(8):725-733,756.
[9] Pertoldi C, Bijlsma R, Loeschcke V. Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodiversity and Conservation, 2007, 16(14):4147-4163.
doi: 10.1007/s10531-007-9212-4
[10] Garcia A A F, Benchimol L L, Barbosa M M, et al. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology, 2004, 27(4):579-588.
doi: 10.1590/S1415-47572004000400019
[11] Wei X, Wang L H, Zhang Y X, et al. Development of simple sequence repeat (SSR) markers of Sesame (Sesamum indicum) from a genome survey. Molecules, 2014, 19(4):5150-5162.
doi: 10.3390/molecules19045150 pmid: 24759074
[12] 刘丽华, 刘阳娜, 张明明, 等. 我国75份小麦品种SNP和SSR指纹图谱构建与比较分析. 中国农业科技导报, 2020, 22(5):15-23.
doi: 10.13304/j.nykjdb.2019.1023
[13] 倪维晨, 李瑞霞, 陶启威, 等. 基于SSR标记的地方品种糯性小玉米自交系指纹图谱构建. 浙江农业科学, 2019, 60(6):911-914.
[14] 赵艳杰, 冯艳芳, 黄思思, 等. 182份东北地区受保护大豆品种DNA指纹库的构建及分析. 中国种业, 2019(11):43-47.
[15] 陆敏佳, 莫秀芳, 王勤, 等. 藜麦基因组DNA提取方法的比较. 江苏农业科学, 2014, 42(4):42-45.
[16] 陈昆松, 李方, 徐昌杰, 等. 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004(4):529-531.
[17] Jarvis D E, Kopp O R, Jellen E N, et al. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). Journal of Genetics, 2008, 87(1):39-51.
doi: 10.1007/s12041-008-0006-6 pmid: 18560173
[18] 左皓南, 张书苗, 高森, 等. 藜麦SSR-PCR反应体系的优化及引物筛选. 青海农林科技, 2020(1):1-6.
[19] Fuentes F F, Martinez E A, Hinrichsen P V, et al. Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 2009, 10(2):369-377.
doi: 10.1007/s10592-008-9604-3
[20] Christensen S A, Pratt D B, Stevens M R, et al. Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genetics Research, 2007, 5(2):82-95.
[21] 宋娇. 藜麦种质资源遗传多样性研究及藜麦品种(系)变异率分析. 西宁:青海大学, 2018.
[22] 孙梦涵, 邢宝, 崔宏亮, 等. 藜麦种质资源遗传多样性SSR标记分析. 植物遗传资源学报, 2021, 22(3):625-637.
doi: 10.13430/j.cnki.jpgr.20200911001
[23] 张海燕, 樊军锋, 郑涛. 18份杨树资源的遗传多样性分析. 西北农林科技大学学报(自然科学版), 2020, 48(12):47-54,63.
[24] 洪文娟. 石榴种质资源SSR分子标记遗传多样性分析及指纹图谱构建. 北京: 北京林业大学, 2020.
[25] 马骢毓, 韩重阳, 马赛男, 等. 基于SSR分子标记的13个白三叶(Trifolium repens L.) 品种指纹图谱构建. 草地学报, 2021, 29(9):1892-1899.
doi: 10.11733/j.issn.1007-0435.2021.09.004
[26] 张红岩. 基于SSR标记的蚕豆DNA指纹图谱构建及品种纯度鉴定. 北京: 中国农业科学院, 2018.
[1] Guo Hongxia, Wang Chuangyun, Deng Yan, Zhao Li, Zhang Liguang, Guo Hongxia, Qin Lixia, Gao Fei, Xi Ruizhen. Response of Quinoa to Low Nitrogen Stress [J]. Crops, 2023, 39(3): 221-229.
[2] Zhang Yufen, Qi Jingkai, Wang Guiling, Zhao Baoping, Zhou Lei. Study on Geographical Origin of Buckwheat Based on Mineral Element Fingerprint [J]. Crops, 2023, 39(3): 66-74.
[3] Liang Ping, Zhang Yongqing, Zhang Meng, Xue Xiaojiao, Li Pingping, Zhang Wenyan, Wang Dan, Zhao Gang. Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress [J]. Crops, 2023, 39(2): 178-185.
[4] Song Yun, Zhang Xinrui, He Jiaxin, Li Zheng, Sun Zhe, Li Aoxuan, Qiao Yonggang. Genetic Diversity Analysis of Sophora flavescens Ait. Germplasm Resources Based on cpSSR Markers [J]. Crops, 2023, 39(1): 30-37.
[5] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[6] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[7] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[8] Lei Lei, Guan Zheyun, Cao Shiliang, Wang Yumin, Lin Chunjing, Peng Bao, Liu Peng, Zhao Limei, Li Zhigang, Zhang Chunbao. Classification of Soybean Heterotic Groups Based on SSR Molecular Markers for Yield-Related Traits [J]. Crops, 2022, 38(4): 54-61.
[9] Wang Siyu, Zuo Wenbo, Zhu Kaili, Guo Huimin, Xing Bao, Guo Yuqing, Bao Yuying, Yang Xiushi, Ren Guixing. Analysis and Evaluation of Agronomic Characteristics and Nutritional Qualities of 71 Quinoa Accessions [J]. Crops, 2022, 38(3): 63-72.
[10] Li Wenlue, Chen Changli, Luo Xiahong, Liu Tingting, An Xia, Jin Guanrong, Zhu Guanlin. Genetic Diversity Analysis of Phenotypic Characteristics of Kenaf Resources in Zhejiang Province [J]. Crops, 2022, 38(1): 50-55.
[11] Gao Zhanning, Wang Shujie, Feng Hui, Xue Zhenggang, Yang Yongqian, Song Xiaopeng, Jie Yuanfen. Comprehensive Evaluation of Two-Rowed Barley Varieties (Lines) [J]. Crops, 2022, 38(1): 70-76.
[12] Ding Liuhuizi, Pi Zhi, Wu Zedong. Construction of SSR Fingerprint and Analysis of Genetic Diversity of Sugar Beet Varieties [J]. Crops, 2021, 37(5): 72-78.
[13] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[14] Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58.
[15] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!