作物杂志,2016, 第2期: 43–49 doi: 10.16035/j.issn.1001-7283.2016.02.008

• 遗传育种·种质资源·生物科技 • 上一篇    下一篇

具有中国大豆遗传背景的7S与11S多亚基缺失型大豆新品系的创制

国博闻,赵雪,魏小双,韩艳婧,梁强飞,宋波,刘珊珊   

  1. 东北农业大学大豆生物学教育部重点实验室,150030,黑龙江哈尔滨
  • 收稿日期:2015-12-23 修回日期:2016-03-15 出版日期:2016-04-15 发布日期:2018-08-26
  • 通讯作者: 刘珊珊
  • 作者简介:国博闻,在读硕士,主要从事大豆遗传育种研究
  • 基金资助:
    国家自然科学基金(31071440,31371650)

Development of a Set of 7S and 11S Multi-Subunit-Deficient Mutants with Chinese Soybean Genetic Background

Guo Bowen,Zhao Xue,Wei Xiaoshuang,Han Yanjing,Liang Qiangfei,Song Bo,Liu Shanshan   

  1. Key Laboratory of Soybean Biology in Chinese Ministry of Education,Northeast Agricultural University,Harbin 150030,Heilongjiang,China
  • Received:2015-12-23 Revised:2016-03-15 Online:2016-04-15 Published:2018-08-26
  • Contact: Shanshan Liu

摘要:

利用我国高油大豆品种东农47与日本引进多亚基缺失型育种材料日B,采用回交、三交的育种方法,综合系谱选择,通过SDS-PAGE技术分析亚基组成,在BC1、BC3及三交种F8群体内,选育到(α+11S groupⅡa)-缺失型、(α′+11S groupⅡa)-缺失型、[(α′+α)+11S groupⅡa、Ⅱb]-缺失型、[(α′+α)+11S groupⅡa]-缺失型、[(α′+α)+11S groupⅡb+X1X2]-缺失型、[(α′+α)+11S groupⅡb]-缺失型和(α′+11S groupⅠ、Ⅱa)-缺失型共7种具有中国大豆遗传背景的7S球蛋白α′、α亚基与11S球蛋白groupⅠ(A1aB1b,A2B1a,A1bB2)、groupⅡa(A4A5B3)和groupⅡb(A3B4)不同亚基缺失组合新种质。测定优良品系的综合农艺性状及氨基酸组成、含量,结果表明,与对照相比,各种缺失突变体的各种氨基酸组分含量普遍提高,蛋白总量普遍高于轮回亲本,精氨酸含量特别是游离精氨酸的含量大幅提高。其中亚基组成为(α+11S groupⅡa)-缺失型品系G2-2-3的17种氨基酸含量、氨基酸总量、蛋氨酸含量均显著高于轮回亲本东农47,特别是游离精氨酸含量高出7.27mg/g。以上结果表明,7S与11S多亚基缺失型优良品系在有效去除致敏蛋白的同时,可以提高大豆蛋白氨基酸含量, 改善大豆蛋白氨基酸组分配比。各种致敏蛋白缺失型大豆优良新品系的获得,大大丰富了我国蛋白质组分改良育种的种质基础。

关键词: 大豆, 贮藏蛋白, 中国遗传背景, 多亚基缺失型, 新种质

Abstract:

By different breeding methods, i.e. backcross, three-way cross combined pedigree selection, a novel set of multi-subunit-deficiency lines was developed by using a multi-subunit-deficiency breeding material RiB as subunit-deficiency donor parent, and Chinese cultivar Dongnong 47 as a genetic background. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, seven band-deficiency types characterized by:(α+11S groupⅡa)-null, (α′+11S groupⅡa)-null, [(α′+α)+11S groupⅡa,Ⅱb]-null, [(α′+α)+11S groupⅡa]-null, [(α′+α)+11S groupⅡb+X1X2]-null, [(α′+α)+11S groupⅡb]-null and (α′+11S groupⅠ,Ⅱa)-null were detected. An comprehensive evaluation of the agronomic performance, amino acid composition and amino acid content analysis revealed that, compared with control, all 7 mutant genotypes showed a generally higher content of amino acids composition. Total protein content in these mutant seeds was higher than that of recurrent parent Dongnong 47, and arginine (Arg) content was especially enriched. The content of total amino acids, 17 amino acid compositions and sulfer-containing amino acids of novel line G2-2-3, which lacked (α+11S groupⅡa)-subunits, were all significantly higher than that of Dongnong 47, and its Arg content was 7.27mg/g higher than Dongnong 47. These results indicate that novel multi-subunit-null lines lacking allergen-subunits appear to contain markedly increased amino acid content and modified storage protein subunit composition. This set of multi-subunit-deficiency variants with Chinese soybean genetic background would be expected to be favorable material for soybean engineering breeding of modifying globulin composition and subunit composition projects.

Key words: Soybean, Storage protein, Chinese genetic background, Multi-subunit-deficient mutants, New germplasm

图1

7S与11S球蛋白多亚基缺失型种子SDS-PAGE图谱1,东农47 Dongnong 47;2,日B RiB;3,G2-2-3(α+11S groupⅡa)-缺失型G2-2-3(α+11S groupⅡa)-null type;4,BC5-84(α′+11S groupⅡa)-缺失型BC5-84(α′+11S groupⅡa)-null type;5,BC5-148-1[(α′+α)+11S groupⅡa、Ⅱb]-缺失型 BC5-148-1[(α′+α)+11S groupⅡa、Ⅱb]-null type;6,BC5-94[(α′+α)+11S groupⅡa]-缺失型 BC5-94[(α′+α)+11S groupⅡa]-null type;7,BC5-11-1[(α′+α)+11S groupⅡb+X1X2]-缺失型 BC5-11-1[(α′+α)+11S groupⅡb+X1X2]-null type;8,BC5-11-2[(α′+α)+11S groupⅡb]-缺失型 BC5-11-2[(α′+α)+11S groupⅡb]- null type;9,C4832 (α′+11S groupⅠ、Ⅱa)-缺失型C4832(α′+11S groupⅠ、Ⅱa)-null type"

图2

7S与11S球蛋白多亚基缺失型大豆部分优良品系田间收获的植株"

表1

7S与11S球蛋白多亚基缺失型部分优良品系田间农艺及品质性状基本特征"

品系
Lines
亚基表现
Subunit composition
世代
Generation
叶型
Blade profile
花色
Flower color
熟期(d)
Growth period
株高(cm)
Plant height
百粒重(g)
100-seed weight
蛋白(%)
Protein
油份(%)
Fat
东农47 7S、11S亚基表现正常 亲本 尖叶 白色 115 78.20±2.1680b 20.39±0.8862bc 40.92±0.6458cd 22.38±0.1643a
绥农10 7S、11S亚基表现正常 三交亲本 尖叶 白色 120 93.00±3.3912a 18.54±1.0896cd 41.02±0.8228cd 21.40±0.2646c
G2-2-3 (α+11S groupⅡa)-缺失型 三交F8 中间型 白色 132 72.00±3.9370bc 16.96±0.8961d 43.96±0.8143a 20.20±0.5568d
BC5-84 (αˊ+11S groupⅡa)-缺失型 BC1F6 尖叶 白色 130 68.00±3.5355c 22.23±1.5341ab 41.36±1.4293bcd 21.80±0.1899bc
BC5-148-1 [(α+αˊ)+11S groupⅡa、Ⅱb]-缺失型 BC1F5 尖叶 白、紫 138 76.00±5.2440b 21.31±0.3938b 40.72±1.2598cd 21.98±0.4712ab
BC5-94 [(α+αˊ)+11S groupⅡa]-缺失型 BC1F6 尖叶 白色 128 67.00±2.4495c 23.37±1.1481a 41.10±0.4848cd 21.98±0.3033ab
BC5-11-1 [(α+αˊ)+11S groupⅡb+X1X2]-缺失型 BC1F5 尖叶 白色 140 69.00±7.6812c 22.37±1.9067ab 42.80±1.1180ab 21.74±0.3209bc
BC5-11-2 [(α+αˊ)+11S groupⅡb]-缺失型 BC1F5 尖叶 白色 138 72.80±6.4962bc 18.94±2.2821cd 41.60±1.9634bc 21.74±0.5505bc
C4832 (αˊ+11S groupⅠ、Ⅱa)-缺失型 BC3F4 尖叶 白色 110 72.00±4.3589bc 17.86±1.7196d 39.84±0.8264d 22.08±0.2388ab

表2

东农47、 G2-2-3、BC5-84和BC5-94的氨基酸及游离氨基酸含量组成"

氨基酸含量(mg/g)Amino acids 游离氨基酸含量(mg/g)Free amino acids
东农47
Dongnong47
G2-2-3 BC5-84 BC5-94 东农47
Dongnong47
G2-2-3 BC5-84 BC5-94
必需氨基酸Essential amino acids
Thr 13.20±0.10c 16.10±0.20a 15.30±0.26b 16.03±0.15a 0.2340±0.0030b 0.3330±0.0547a 0.2673±0.0673ab 0.3377±0.0321a
Val 14.90±0.30c 18.00±0.17a 16.70±0.46b 17.63±0.15a 0.1155±0.0015b 0.1153±0.0032b 0.1350±0.0151a 0.1307±0.0106ab
Met 3.70±0.10c 5.17±0.06a 4.47±0.06b 4.50±0.17b 0.0715±0.0025a 0.0720±0.0017a 0.0760±0.0122a 0.0713±0.0031a
Ile 14.50±0.30c 18.17±0.15a 17.40±0.36b 17.50±0.20b 0.0995±0.0025a 0.0763±0.0015b 0.1037±0.0107a 0.0987±0.0040a
Leu 27.00±0.30c 31.33±0.23a 29.53±0.55b 29.40±0.20b 0.1860±0.0060a 0.1090±0.0044c 0.1720±0.0128a 0.1537±0.0070b
Phe 18.17±0.21c 21.20±0.17a 19.67±0.32b 19.60±0.00b 0.1890±0.0010c 0.2107±0.0029bc 0.2340±0.0161ab 0.2517±0.0318a
Lys 22.83±0.21d 26.37±0.21a 24.47±0.42b 23.53±0.12c 0.2365±0.0085b 0.2600±0.0036ab 0.2947±0.0410a 0.2723±0.0144ab
非必需氨基酸Non-essential amino acids
Asp 38.20±0.79c 46.47±0.76a 42.73±0.81b 42.80±0.35b 0.6475±0.0475c 0.9000±0.0376b 0.9130±0.0467b 1.0103±0.0572a
Ser 17.93±0.31c 20.47±0.42a 19.17±0.32b 19.13±0.15b 0.0915±0.0015b 0.1193±0.0145ab 0.1117±0.0239ab 0.1307±0.0111a
Glu 60.40±1.05c 66.53±0.40a 61.90±0.87b 57.87±0.45d 0.4185±0.0465c 0.7137±0.0862b 0.8237±0.0723b 1.0900±0.0244a
Gly 14.67±0.6d 16.73±0.06a 15.43±0.31c 16.23±0.12b 0.0535±0.0005b 0.0860±0.0964a 0.0863±0.0257a 0.0897±0.0096a
Ala 14.60±0.20c 16.40±0.00a 15.73±0.40b 16.13±0.12ab 0.1290±0.0020c 0.1403±0.0133c 0.1993±0.0121b 0.2397±0.0153a
Cys 5.30±0.10b 5.80±0.17a 5.30±0.10b 5.37±0.15b 0.1670±0.0020c 0.2317±0.0168a 0.2007±0.0025b 0.1797±0.0032c
Tyr 11.30±0.17b 12.00±0.10a 10.97±0.32b 11.30±0.00b 0.1110±0.0030b 0.1540±0.0017a 0.1667±0.0341a 0.1570±0.0210a
His 8.87±0.12d 12.43±0.23a 10.40±0.17c 11.03±0.12b 0.0995±0.0115b 0.3560±0.0821a 0.3380±0.0389a 0.3247±0.0355a
Arg 23.27±0.35c 35.77±1.70a 31.87±0.91b 30.87±0.99b 1.1735±0.0445c 8.4473±1.8440a 5.8207±0.3857b 6.4193±0.7376b
Pro 18.33±0.45d 20.73±0.25a 19.57±0.21b 18.93±0.25c 0.1665±0.0005b 0.2050±0.0053a 0.1887±0.0194ab 0.1800±0.0131b
TAA 327.17±4.15c 389.67±4.71a 360.60±6.15b 357.87±1.25b 4.1895±0.1045c 12.5297±2.1430a 10.1320±0.6706b 11.1370±0.8595ab
含硫氨基酸Sulfur-cotaining amino acids
Met+Cys 9.00±0.20c 10.97±0.15a 9.77±0.12b 9.87±0.25b 0.2385±0.0045c 0.3037±0.0152a 0.2767±0.0100b 0.2510±0.0062c
[1] Koshiyama I . Chemical and physical properties of a 7S protein in soybean globulins. Cereal Chemistry, 1968,45:394-404.
[2] Utsumi S, Kinsella J E . Forces involved in soy protein gelation: effects of various reagents on the formation,hardness and solubility of heat-induced gels made from 7S,11S and soy isolate. Journal of Food Science, 1985,50:1278-1282.
doi: 10.1111/jfds.1985.50.issue-5
[3] Salleh M R B, Maruyama N, Takahashi K , et al. Gelling properties of soybean beta-conglycinin having different subunits compositions.Bioscience,Biotechnology, and Biochemistry, 2004,68:1091-1096.
[4] Aoyama T, Kohno M, Saito T , et al. Reduction by phytate-reduced soybean beta-conglycinin of plasma triglyceride level of young and adult rat.Bioscience,Biotechnology, and Biochemistry, 2001,65:1071-1075.
[5] Manzoni C, Lovati M R, Ggianazza E , et al. Soybean protein products as regulators of liver low-density lipoproteinreceptors Ⅱ.a α′ rich commercial soy concentrate and a deficient mutant differently affect low-density lipoproteinreceptor activation. Journal of Agricultural and Food Chemistry, 1998,46:2481-2484.
doi: 10.1021/jf980100c
[6] Sirtori C R, Lovati M R, Manzoni C , et al. Soy and cholesterol reduction clinical experience. Journal of Nutrition, 1995,125:598-605.
[7] Schuler M A, Schmitt E S, Beachy R N . Closely related families of genes code for the α and α′ subunits of the soybean 7S storage protein complex. Nucleic Acids Research, 1982,10:8225-8243.
doi: 10.1093/nar/10.24.8225
[8] Sebastiani F L, Farrell L B, Schuler M A , et al. Complete sequence of a cDNA of α subunit of soybean β-conglycinin. Plant Molecular Biology, 1990,15:197-201.
doi: 10.1007/BF00017745
[9] Tierney M L, Bray E A, Allen R D , et al. Isolation and characterization of a genomic clone encoding the β-subunit of β-conglycinin. Planta, 1987,172:356-363.
doi: 10.1007/BF00398664
[10] Than V H, Shibasaki K . Beta-conglycinin from soybean proteins.Isolation and immunological and physicochemical properties of the monomeric forms. Biochimica et Biophysica Acta, 1977,490:370-384.
doi: 10.1016/0005-2795(77)90012-5
[11] Staswick P E, Hermodson M A, Nielsen N C . Identification of the acidic and basic subunit complexes of glycinin. Biological Chemistry, 1981,256:8752-8755.
[12] Kaviani B, Kharabian A . Improvement of the nutritional value of soybean [Glycine max (L.) Merr.]seed with alteration in protein subunit of glycinin (11S globulin) and beta-conglycinin (7S globulin). Turkish Journal of Biology, 2008,32:91-97.
[13] Tsukada Y, Kitamura K, Harada K , et al. Genetic analysis of subunits of two major storage protein (β-conglycinin and glycinin) in soybean seeds. Japanse Journal of Breed, 1986,36:390-400.
doi: 10.1270/jsbbs1951.36.390
[14] Vaintraub I A, Shutov A D . Moleeular weight of subunits of soybean 11S proteins. Biokhimiia, 1971,36(5):1086-1088.
[15] Adachi M, Takenaka Y, Gidamis A B . Crystal structure of soybean proglycinin AlaBlb homotrimer. Journal of Molecular Biology, 2001,305:291-305.
doi: 10.1006/jmbi.2000.4310
[16] Adachi M, Kanalnori J, Masuda T . Crystal structure of soybean 11S globulin:glycinin A3B4 homohexamer. Proceedings of the National Academy of Science of the United States of America, 2003,100:7395-7400.
doi: 10.1073/pnas.0832158100
[17] Staswick P E, Hermodson M A, Nilsen N C . Identification of the cystines which link the acidic and basic components of the glycinin subunits. Biological Chemistry, 1984,259:13431-13435.
[18] Ygasaki K, Kaizuma N, Kltamura K . Inheritance of glyeinin subunits and characterization of glyinin molecules lacking the subunits in soybean [Glyeine max(L.)Merr.]. Breeding Science, 1996,46:11-15.
[19] Nielsen N C, Diekinson C D, Cho T J . Characterization of the glycinin gene family in soybean. Plant Cell, 1989,1:313-328.
doi: 10.1105/tpc.1.3.313
[20] Fukushina D . Recent progress of soybean protein foods. Food Reviews International, 1991,7:323-335.
doi: 10.1080/87559129109540915
[21] Yamaauchi F . Molecular understanding of soybean protein. Food Reviews International, 1991,7:283-332.
doi: 10.1080/87559129109540914
[22] Takahashi M, Uematsu Y, Kashiwaba K , et al. Accumulations of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta, 2003,217:577-586.
doi: 10.1007/s00425-003-1026-3
[23] Jennings A C, Morton R K . Amino acids and protein synthesis in developing wheat endosperm. Australia Journal of Boil Science, 1963,16:384-394.
[24] Mertz E T, Bates L S, Nelson O E . Mutant gene that changes protein composition and increased lysine content of maize endosperm. Scinence, 1964,145:279-280.
doi: 10.1126/science.145.3629.279
[25] Misra P S, Mertz E T, Glover D V . Studies on corn proteins:Ⅷ.Free amino acid content of opaque-2 and double mutants. Cereal Chemistry, 1975,52:844-848.
[26] Mauri I, Maddaloni M, Lohmer S , et al. Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yease. Molecular and General Genetics, 1993,241:319-326.
[27] Or E, Boyer S K, Larkins B A . Opaque2 modifies act post-transcriptionally and in a polar manner on gamma-zein gene expression in maize endosperm. Plant cell, 1993,5:1599-1609.
[28] Gillikin J W, Zhang F, Coleman C E , et al. A defective sign peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiology, 1997,114, 345-352.
doi: 10.1104/pp.114.1.345
[29] Coleman C E, Lopes M A, Gillikin J W , et al. A defective signal peptide in the maize high-lysine mutant floury-2. Proceedings of National Academy Sciences USA, 1995,92:6828-6831.
doi: 10.1073/pnas.92.15.6828
[30] Mertz E T. Thirty years of opaque2 maize. In BA Larkins,ET Mertz,eds,Quality protein Maize 1964-1994.Purdue University Press,West Lafayette, 1997: 25-37.
[31] Kim C S, Gibbon B C, Gillikin J W , et al. The maize mucronate mutation is a deletion in the 16-kDa gamma-zein gene that induces the unfolded protein response. Plant Journal, 2006,48:440-451.
doi: 10.1111/tpj.2006.48.issue-3
[32] Geevers H O, Lake J K . Development of modified opaque2 maize in South Africa. American Association of Cereal Chemists, 1992: 49-78.
[33] Glover D V . Corn protein-genetics,breeding,and value in foods and feeds. American Association of Cereal Chemists, 1992: 49-78.
[34] Harada K, Hayashi M, Tsubokura Y . Genetic variation of globulin composition in soybean seeds. Agriculture Research Updates, 2013,5:101-116.
[35] Cantón F R, Suáez M F, Cánovas F M . Molecular aspects of nitrogen mobilization and recycling in trees. Photosynthesis Research, 2005,83:265-278.
doi: 10.1007/s11120-004-9366-9
[36] Cheng L, Ma F, Ranwala D . Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply. Tree Physiology, 2004,24:91-98.
doi: 10.1093/treephys/24.1.91
[1] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114–120
[2] 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 44–50
[3] 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152–155
[4] 马天乐,章建新. 不同复种方式麦茬夏大豆的干物质积累、产量及经济效益比较[J]. 作物杂志, 2018, (1): 156–159
[5] 李丽娜,金龙国,谢传晓,刘昌林. 转基因玉米和转基因大豆盲样检测方法[J]. 作物杂志, 2017, (6): 37–44
[6] 董志敏,厉志,刘佳,陈亮,衣志刚,王博,刘宝权. 大豆抗灰斑病研究进展[J]. 作物杂志, 2017, (3): 1–5
[7] 周学超,丁素荣,魏云山,周艳芳,魏学,娜日娜,李峰. 不同鲜食大豆品种(系)在赤峰地区的适应性评价[J]. 作物杂志, 2017, (3): 44–48
[8] 任国勇,李伟,张礼凤,王彩洁,戴海英,王金龙,徐冉,张彦威. 转HarpinXooc蛋白编码基因hrf2大豆的胞囊线虫病1号小种抗性鉴定[J]. 作物杂志, 2017, (3): 49–53
[9] 张旭丽,邢宝龙,王桂梅,殷丽丽. 密度对晋北区大豆农艺性状、经济性状及产量的影响[J]. 作物杂志, 2017, (3): 127–131
[10] 张喜亭,曹立为,吕书财,陈国兴,王永吉,于舒函,龚振平. 黑土容重对大豆氮素吸收及产量的影响[J]. 作物杂志, 2017, (3): 132–137
[11] 田艺心,高凤菊. 高蛋白大豆生长发育及干物质积累分配对密度的响应研究[J]. 作物杂志, 2017, (2): 121–125
[12] 闫丽,杨强,邵宇鹏,李丹丹,王志坤,李文滨. 大豆GmWRI1a基因启动子克隆及序列分析[J]. 作物杂志, 2017, (2): 51–58
[13] 鲁萍,金成功,张茜,姜佰文,闫南南,肖同玉,白雅梅,李景欣,陈睿,李静. 反枝苋和大豆对降雨季节波动的生理生态响应[J]. 作物杂志, 2017, (2): 114–120
[14] 高宇,刘延超,史树森,崔娟,熊晋峰. 我国大豆田蓟马研究现状[J]. 作物杂志, 2017, (1): 8–13
[15] 李海燕,蔡德利,陈井生,段玉玺,陈立杰,商莹宇. 大豆抗感资源对大豆胞囊线虫3号生理小种生长发育动态的影响[J]. 作物杂志, 2017, (1): 144–149
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .