作物杂志,2022, 第2期: 81–88 doi: 10.16035/j.issn.1001-7283.2022.02.012

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

小麦脱植基相关基因在春性小麦叶片叶绿素降解过程中的作用分析

赵锴(), 晋秀娟, 孙丽丽, 闫荣岳, 卢娟, 郭峰, 史雨刚, 孙黛珍()   

  1. 山西农业大学农学院,030801,山西晋中
  • 收稿日期:2021-10-14 修回日期:2021-12-30 出版日期:2022-04-15 发布日期:2022-04-24
  • 通讯作者: 孙黛珍
  • 作者简介:赵锴,主要从事小麦遗传育种研究,E-mail: zk51712@163.com
  • 基金资助:
    山西农业大学学术恢复科研专项(2020xshf02);山西省自然科学基金(201901D11228)

The Role of Wheat Deplantation-Related Genes in Degradation of Chlorophyll in Spring Wheat Leaves

Zhao Kai(), Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen()   

  1. College of Agricultural, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2021-10-14 Revised:2021-12-30 Online:2022-04-15 Published:2022-04-24
  • Contact: Sun Daizhen

摘要:

小麦叶片的衰老会导致产量的损失,而叶绿素降解是小麦叶片衰老的明显特征,分析小麦叶绿素降解过程中脱植基反应的相关基因叶绿素酶(TaCLH)和脱镁叶绿素水解酶(TaPPH)在春性小麦叶片衰老过程中的作用,为解析小麦叶绿素降解的分子机制提供参考。以10个春性小麦品种为参试材料,对衰老过程中TaCLHTaPPH的相对表达量进行测定,结合不同品种在开花后不同时期的相对叶绿素含量(SPAD)、功能绿叶面积(GLAD)和叶绿素荧光参数的变化规律,研究叶片衰老过程中TaCLHTaPPH与SPAD、GLAD和叶绿素荧光参数的相关关系。结果表明,TaPPH的相对表达量与GLAD、SPAD及叶绿素荧光参数[ETR、Fv/Fm、Y(Ⅱ)]等生理指标之间存在极显著负相关关系,与TaCLH相对表达量存在极显著正相关关系,表明TaPPH在春小麦叶绿素降解过程的脱植基反应中起主要作用。

关键词: 小麦, 叶绿素, 荧光参数, TaCLH, TaPPH, 基因表达

Abstract:

Leaf senescence of wheat leads to yield loss, and chlorophyll degradation is an important feature of wheat leaf senescence. The purpose of this study is to explore the role of chlorophyll degradation-related genes chlorophyllase (TaCLH) and pheophytin pheophorbide hydrolase (TaPPH) in the senescence process of spring wheat leaves, and to provide a reference for analyzing the molecular mechanism of chlorophyll degradation in wheat. Ten spring wheats were used as test materials. The relative expression of TaCLH and TaPPH in the flag leaves during the aging process were measured, the relative chlorophyll content (SPAD value) and functional leaf area (GLAD) of different wheat varieties at different stages after anthesis as well as the changes in chlorophyll fluorescent parameters were analyzed to explore the correlation between TaCLH and TaPPH with SPAD, GLAD and chlorophyll fluorescent parameters during leaf senescence. The results showed that there were extremely significant negative correlations between TaPPH relative expression level with SPAD, GLAD and chlorophyll fluorescence parameters [ETR, Fv/Fm, Y(II)], and there was a highly significant positive correlation between the relative expression levels of TaCLH and TaPPH. This indicated that TaPPH played a major regulatory role in the flag leaf senescence process after anthesis in spring wheat.

Key words: Wheat, Chlorophyll, Fluorescence parameters, TaCLH, TaPPH, Gene expression

图1

不同品种春性小麦花后主茎旗叶SPAD和GLAD值的动态变化

表1

不同品种春性小麦花后基于SPAD及GLAD值的衰老特征参数

指标
Index
品种
Variety
特征参数Characteristic parameter
MRS TMRS (d) Ts (d) T0 (d)
SPAD 晋麦2148 5.48ab 23.97ef 15.60ab 27.07d
宁春13号 4.38bc 24.90cdef 14.21ab 28.88cd
内麦19号 3.62cd 23.72f 11.79bc 28.22cd
博爱7023 5.02bcd 26.01bc 16.56a 29.51abc
生选3号 5.39ab 25.46cd 16.78a 28.67bcd
川麦22 6.72a 27.31a 19.11a 30.34a
绵阳15号 4.51bcd 27.10ab 17.17a 30.77a
新春8号 3.93cd 25.56cd 12.54bc 30.48a
宁春4号 3.58cd 24.59def 11.08c 29.77abc
青春5号 3.44d 25.22cde 12.72bc 29.92ab
GLAD值
GLAD value
晋麦2148 0.74a 27.28abc 15.78a 31.55abc
宁春13号 0.75a 28.16a 16.68a 32.42ab
内麦19号 0.80a 27.16abc 16.58a 31.09abc
博爱7023 0.85a 24.57ef 14.59a 28.27bc
生选3号 0.76a 23.94f 13.15a 27.97c
川麦22 0.66a 27.29ab 13.89a 32.32a
绵阳15号 0.60a 27.18ab 13.69a 32.25a
新春8号 0.70a 26.33bcd 13.94a 30.97abc
宁春4号 0.62a 25.73cde 12.13a 30.90abc
青春5号 0.65a 25.59de 12.29a 30.63abc

图2

不同品种春性小麦基于SPAD值的系统聚类图

表2

3类小麦基于SPAD和GLAD值的衰老特征参数

指标
Index
类群
Group
特征参数Characteristic parameter
MRS TMRS (d) Ts (d) T0 (d)
SPAD 5.42 25.97 17.04 29.27
3.64 24.77 12.03 29.60
4.38 24.90 14.21 28.88
GLAD值
GLAD value
0.79 26.79 15.91 30.83
0.73 25.14 13.55 29.47
0.63 26.45 13.00 31.53

图3

不同品种春性小麦基于GLAD值的系统聚类图

图4

不同品种春性小麦花后主茎旗叶荧光参数动态变化

图5

2种持绿类型小麦花后不同阶段旗叶荧光参数的动态变化

图6

不同品种春性小麦花后不同阶段TaCLH和TaPPH相对表达量的动态变化

表3

各性状间的相关系数

指标Index Y(II) Fv/Fm ETR qP GLAD值GLAD value SPAD TaCLH TaPPH
Y(II) 1
Fv/Fm 0.952** 1
ETR 0.919** 0.928** 1
qP 0.063 0.014 0.083 1
GLAD 0.919** 0.914** 0.840** 0.054 1
SPAD 0.913** 0.945** 0.893** 0.010 0.905** 1
TaCLH -0.075 -0.076 -0.006 0.100 -0.061 -0.089 1
TaPPH -0.587** -0.564** -0.450** 0.121 -0.591** -0.575** 0.391** 1
[1] 孙玉莹, 毕京翠, 赵志超, 等. 作物叶片衰老研究进展. 作物杂志, 2013(4):11-19.
[2] Navabpour S, Morris K, Allen R, et al. Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 2003, 54(391):2285-2292.
pmid: 12947053
[3] Hendry G A F, Houghton J D, Brown S B. The degradation of chlorophyll-a biological enigma. New Phytologist, 1987, 107(2):255-302.
doi: 10.1111/j.1469-8137.1987.tb00181.x
[4] 李根, 张成, 王强, 等. 植物叶绿素代谢途径及其分子调控. 四川农业科技, 2021(4):41-45.
[5] 丁跃, 吴刚, 郭长奎. 植物叶绿素降解机制研究进展. 生物技术通报, 2016, 32(11):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001
[6] 陈俊毅, 朱晓宇, 蒯本科. 绿色器官衰老进程中叶绿素降解代谢及其调控的研究进展. 植物生理学报, 2014, 50(9):1315-1321.
[7] Suzuki T, Kunieda T, Murai F, et al. Mg-dechelation activity in radish cotyledons with artificial and native substrates,Mg-chlorophyllin a and chlorophyllide a. Plant Physiolgy and Biochemistry, 2005, 43(5):459-464.
[8] Schelbert S, Aubry S, Burla B, et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell, 2009, 21(3):767-785.
doi: 10.1105/tpc.108.064089
[9] Harpaz-Saad S, Azoulay T, Arazi T, et al. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 2007, 19(3):1007-1022.
pmid: 17369368
[10] Morita R, Sato Y, Masuda Y, et al. Defect in non-yellow coloring 3,an α/β hydrolase-fold family protein,causes a stay-green phenotype during leaf senescence in rice. Plant Journal, 2009, 59(6):940-952.
doi: 10.1111/j.1365-313X.2009.03919.x
[11] Guyer L, Hofstetter S S, Christ B, et al. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiology, 2014, 166(1):44-56.
doi: 10.1104/pp.114.239541
[12] Vijayalakshmi K, Fritz A K, Paulsen G M, et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 2010, 26(2):163-175.
doi: 10.1007/s11032-009-9366-8
[13] Moser S, Müller T, Oberhuber M, et al. Chlorophyll catabolites-chemical and structural footprints of a fascinating biological phenomenon. European Journal of Organic Chemistry, 2009(1):21-31.
[14] 唐蕾, 毛忠贵. 植物叶绿素降解途径及其分子调控. 植物生理学报, 2011, 47(10):936-942.
[15] Takamiya K I, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll:what has gene cloning revealed?. Trends in Plant Science, 2000, 5(10):426-431.
pmid: 11044719
[16] Hirschfeld K R, Goldschmidt E E. Chlorophyllase activity in chlorophyll-free citrus chromoplasts. Plant Cell Reports, 1983, 2(3):117-118.
doi: 10.1007/BF00269332 pmid: 24257977
[17] Okazawa A, Tango L, Itoh Y, et al. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 2006, 61(1/2):111-117.
[18] Schenk N, Schelbert S, Kanwischer M, et al. The chlorophyllases AtCLH1 and AtCLH 2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. Febs Letters, 2007, 581(28):5517-5525.
doi: 10.1016/j.febslet.2007.10.060
[19] Hörtensteiner S, Kräutler B. Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta-Biomembranes, 2011, 1807:977-988.
[20] Hu X, Makita S, Schelbert S, et al. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiolgy, 2015, 167(3):660-670.
[21] Ren G, Zhou Q, Wu S, et al. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. Journal of Integrative Plant Biology, 2009, 52(5):496-504.
[22] Tian Y N, Zhong R H, Wei J B, et al. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in Photosystem II repair. Molecular Plant, 2021, 14(7):1149-1167.
doi: 10.1016/j.molp.2021.04.006
[23] Chen C M, Yang J H, Liu C H, et al. Molecular,structural,and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa. Plant Systematics and Evolution, 2014, 300(4):633-643.
doi: 10.1007/s00606-013-0908-5
[24] Tanaka K, Kakuno T, Yamashita J, et al. Purification and properties of chlorophyllase from greened rye seedlings. Journal of Biochemistry, 1982, 92(6):1763-1773.
pmid: 6819291
[25] Majumdar S, Ghosh S, Glick B R, et al. Activities of chlorophyllase,phosphoenolpyruvate carboxylase and ribulose‐1,5‐bisphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiologia Plantarum, 1991, 81(4):473-480.
doi: 10.1111/j.1399-3054.1991.tb05087.x
[1] 王健, 许爱玲, 杨娜, 王珂, 席吉龙, 卫晓东, 张建诚, 席天元. 运城盆地不同播期小麦干热风发生风险评价[J]. 作物杂志, 2022, (2): 104–112
[2] 郝瑞煊, 孙敏, 任爱霞, 林文, 王培如, 韩旭阳, 王强, 高志强. 宽幅条播冬小麦水分利用与干物质积累、品质的关系及播种密度的调控研究[J]. 作物杂志, 2022, (2): 119–126
[3] 周煜庄, 王瑞, 姚照胜, 张伟军, 刘涛, 孙成明. 不同土壤表面结构对小麦生长发育及产量的影响[J]. 作物杂志, 2022, (2): 127–133
[4] 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同品质类型小麦产量及光合性能的影响[J]. 作物杂志, 2022, (2): 134–142
[5] 闫晓翠, 段振盈, 杨华丽, 姚占军, 李在峰. 小麦品种周麦22抗叶锈病的QTL定位[J]. 作物杂志, 2022, (2): 69–74
[6] 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 1–10
[7] 杨程, 杜思梦, 张德奇, 时艳华, 李向东, 邵运辉, 方保停, 王汉芳. 基于叶绿素荧光的小麦越冬期冻害评价[J]. 作物杂志, 2022, (1): 154–160
[8] 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167–173
[9] 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 38–43
[10] 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 56–64
[11] 葛昌斌, 张宏套, 廖平安, 曹燕燕, 黄杰, 乔冀良, 郭春强, 王君, 秦素研, 张兰, 夏明聪, 程斌, 张立异. 贵协3号小麦衍生品种(系)的赤霉病抗性评价及农艺性状分析[J]. 作物杂志, 2022, (1): 96–101
[12] 苏文平, 王欢, 艾木拉姑丽·库尔班, 赵鑫琳, 薛丽华, 章建新, 刘俊, 孙诗仁. 北疆临冬播小麦品种间生育特性及产量比较[J]. 作物杂志, 2021, (6): 108–114
[13] 杨娜, 席吉龙, 王珂, 席天元, 张建诚, 姚景珍, 王健. 春季灌水对晋南晚播冬小麦产量和水分利用的影响[J]. 作物杂志, 2021, (6): 115–121
[14] 王奇, 李妹娟, 章家恩, 汤嘉欣, 曾文静, 周磊, 杨清心, 江明敏, 伍嘉源, 罗明珠. 稻鱼共作对水稻叶绿素荧光特征及产量的影响[J]. 作物杂志, 2021, (6): 145–151
[15] 郭明明, 王康君, 张广旭, 孙中伟, 李筠, 章跃树, 代丹丹, 陈凤, 樊继伟. 播期和行距互作对小麦籽粒产量和品质的调控[J]. 作物杂志, 2021, (6): 152–158
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!