作物杂志,2022, 第2期: 8188 doi: 10.16035/j.issn.1001-7283.2022.02.012
赵锴(), 晋秀娟, 孙丽丽, 闫荣岳, 卢娟, 郭峰, 史雨刚, 孙黛珍()
Zhao Kai(), Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen()
摘要:
小麦叶片的衰老会导致产量的损失,而叶绿素降解是小麦叶片衰老的明显特征,分析小麦叶绿素降解过程中脱植基反应的相关基因叶绿素酶(TaCLH)和脱镁叶绿素水解酶(TaPPH)在春性小麦叶片衰老过程中的作用,为解析小麦叶绿素降解的分子机制提供参考。以10个春性小麦品种为参试材料,对衰老过程中TaCLH和TaPPH的相对表达量进行测定,结合不同品种在开花后不同时期的相对叶绿素含量(SPAD)、功能绿叶面积(GLAD)和叶绿素荧光参数的变化规律,研究叶片衰老过程中TaCLH和TaPPH与SPAD、GLAD和叶绿素荧光参数的相关关系。结果表明,TaPPH的相对表达量与GLAD、SPAD及叶绿素荧光参数[ETR、Fv/Fm、Y(Ⅱ)]等生理指标之间存在极显著负相关关系,与TaCLH相对表达量存在极显著正相关关系,表明TaPPH在春小麦叶绿素降解过程的脱植基反应中起主要作用。
[1] | 孙玉莹, 毕京翠, 赵志超, 等. 作物叶片衰老研究进展. 作物杂志, 2013(4):11-19. |
[2] |
Navabpour S, Morris K, Allen R, et al. Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 2003, 54(391):2285-2292.
pmid: 12947053 |
[3] |
Hendry G A F, Houghton J D, Brown S B. The degradation of chlorophyll-a biological enigma. New Phytologist, 1987, 107(2):255-302.
doi: 10.1111/j.1469-8137.1987.tb00181.x |
[4] | 李根, 张成, 王强, 等. 植物叶绿素代谢途径及其分子调控. 四川农业科技, 2021(4):41-45. |
[5] |
丁跃, 吴刚, 郭长奎. 植物叶绿素降解机制研究进展. 生物技术通报, 2016, 32(11):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001 |
[6] | 陈俊毅, 朱晓宇, 蒯本科. 绿色器官衰老进程中叶绿素降解代谢及其调控的研究进展. 植物生理学报, 2014, 50(9):1315-1321. |
[7] | Suzuki T, Kunieda T, Murai F, et al. Mg-dechelation activity in radish cotyledons with artificial and native substrates,Mg-chlorophyllin a and chlorophyllide a. Plant Physiolgy and Biochemistry, 2005, 43(5):459-464. |
[8] |
Schelbert S, Aubry S, Burla B, et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell, 2009, 21(3):767-785.
doi: 10.1105/tpc.108.064089 |
[9] |
Harpaz-Saad S, Azoulay T, Arazi T, et al. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 2007, 19(3):1007-1022.
pmid: 17369368 |
[10] |
Morita R, Sato Y, Masuda Y, et al. Defect in non-yellow coloring 3,an α/β hydrolase-fold family protein,causes a stay-green phenotype during leaf senescence in rice. Plant Journal, 2009, 59(6):940-952.
doi: 10.1111/j.1365-313X.2009.03919.x |
[11] |
Guyer L, Hofstetter S S, Christ B, et al. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiology, 2014, 166(1):44-56.
doi: 10.1104/pp.114.239541 |
[12] |
Vijayalakshmi K, Fritz A K, Paulsen G M, et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 2010, 26(2):163-175.
doi: 10.1007/s11032-009-9366-8 |
[13] | Moser S, Müller T, Oberhuber M, et al. Chlorophyll catabolites-chemical and structural footprints of a fascinating biological phenomenon. European Journal of Organic Chemistry, 2009(1):21-31. |
[14] | 唐蕾, 毛忠贵. 植物叶绿素降解途径及其分子调控. 植物生理学报, 2011, 47(10):936-942. |
[15] |
Takamiya K I, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll:what has gene cloning revealed?. Trends in Plant Science, 2000, 5(10):426-431.
pmid: 11044719 |
[16] |
Hirschfeld K R, Goldschmidt E E. Chlorophyllase activity in chlorophyll-free citrus chromoplasts. Plant Cell Reports, 1983, 2(3):117-118.
doi: 10.1007/BF00269332 pmid: 24257977 |
[17] | Okazawa A, Tango L, Itoh Y, et al. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 2006, 61(1/2):111-117. |
[18] |
Schenk N, Schelbert S, Kanwischer M, et al. The chlorophyllases AtCLH1 and AtCLH 2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. Febs Letters, 2007, 581(28):5517-5525.
doi: 10.1016/j.febslet.2007.10.060 |
[19] | Hörtensteiner S, Kräutler B. Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta-Biomembranes, 2011, 1807:977-988. |
[20] | Hu X, Makita S, Schelbert S, et al. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiolgy, 2015, 167(3):660-670. |
[21] | Ren G, Zhou Q, Wu S, et al. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. Journal of Integrative Plant Biology, 2009, 52(5):496-504. |
[22] |
Tian Y N, Zhong R H, Wei J B, et al. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in Photosystem II repair. Molecular Plant, 2021, 14(7):1149-1167.
doi: 10.1016/j.molp.2021.04.006 |
[23] |
Chen C M, Yang J H, Liu C H, et al. Molecular,structural,and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa. Plant Systematics and Evolution, 2014, 300(4):633-643.
doi: 10.1007/s00606-013-0908-5 |
[24] |
Tanaka K, Kakuno T, Yamashita J, et al. Purification and properties of chlorophyllase from greened rye seedlings. Journal of Biochemistry, 1982, 92(6):1763-1773.
pmid: 6819291 |
[25] |
Majumdar S, Ghosh S, Glick B R, et al. Activities of chlorophyllase,phosphoenolpyruvate carboxylase and ribulose‐1,5‐bisphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiologia Plantarum, 1991, 81(4):473-480.
doi: 10.1111/j.1399-3054.1991.tb05087.x |
[1] | 王健, 许爱玲, 杨娜, 王珂, 席吉龙, 卫晓东, 张建诚, 席天元. 运城盆地不同播期小麦干热风发生风险评价[J]. 作物杂志, 2022, (2): 104112 |
[2] | 郝瑞煊, 孙敏, 任爱霞, 林文, 王培如, 韩旭阳, 王强, 高志强. 宽幅条播冬小麦水分利用与干物质积累、品质的关系及播种密度的调控研究[J]. 作物杂志, 2022, (2): 119126 |
[3] | 周煜庄, 王瑞, 姚照胜, 张伟军, 刘涛, 孙成明. 不同土壤表面结构对小麦生长发育及产量的影响[J]. 作物杂志, 2022, (2): 127133 |
[4] | 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同品质类型小麦产量及光合性能的影响[J]. 作物杂志, 2022, (2): 134142 |
[5] | 闫晓翠, 段振盈, 杨华丽, 姚占军, 李在峰. 小麦品种周麦22抗叶锈病的QTL定位[J]. 作物杂志, 2022, (2): 6974 |
[6] | 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 110 |
[7] | 杨程, 杜思梦, 张德奇, 时艳华, 李向东, 邵运辉, 方保停, 王汉芳. 基于叶绿素荧光的小麦越冬期冻害评价[J]. 作物杂志, 2022, (1): 154160 |
[8] | 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167173 |
[9] | 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 3843 |
[10] | 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 5664 |
[11] | 葛昌斌, 张宏套, 廖平安, 曹燕燕, 黄杰, 乔冀良, 郭春强, 王君, 秦素研, 张兰, 夏明聪, 程斌, 张立异. 贵协3号小麦衍生品种(系)的赤霉病抗性评价及农艺性状分析[J]. 作物杂志, 2022, (1): 96101 |
[12] | 苏文平, 王欢, 艾木拉姑丽·库尔班, 赵鑫琳, 薛丽华, 章建新, 刘俊, 孙诗仁. 北疆临冬播小麦品种间生育特性及产量比较[J]. 作物杂志, 2021, (6): 108114 |
[13] | 杨娜, 席吉龙, 王珂, 席天元, 张建诚, 姚景珍, 王健. 春季灌水对晋南晚播冬小麦产量和水分利用的影响[J]. 作物杂志, 2021, (6): 115121 |
[14] | 王奇, 李妹娟, 章家恩, 汤嘉欣, 曾文静, 周磊, 杨清心, 江明敏, 伍嘉源, 罗明珠. 稻鱼共作对水稻叶绿素荧光特征及产量的影响[J]. 作物杂志, 2021, (6): 145151 |
[15] | 郭明明, 王康君, 张广旭, 孙中伟, 李筠, 章跃树, 代丹丹, 陈凤, 樊继伟. 播期和行距互作对小麦籽粒产量和品质的调控[J]. 作物杂志, 2021, (6): 152158 |
|