作物杂志,2022, 第3期: 1–8 doi: 10.16035/j.issn.1001-7283.2022.03.001

• 专题综述 •    下一篇

我国农田氧化亚氮排放的时空特征及减排途径

严圣吉1,2(), 尚子吟1,2, 邓艾兴1, 张卫建1,2()   

  1. 1中国农业科学院作物科学研究所,100081,北京
    2中国农业科学院农业农村碳达峰碳中和研究中心,100081,北京
  • 收稿日期:2022-01-22 修回日期:2022-04-06 出版日期:2022-06-15 发布日期:2022-06-20
  • 通讯作者: 张卫建
  • 作者简介:严圣吉,主要从事作物耕作与农田生态研究,E-mail: 15690307667@163.com
  • 基金资助:
    现代农业产业技术体系建设专项(绿肥,CARS-22);中国科学院学部咨询评议重点项目(2021-SM01-B-008);中国农业科学院科技创新工程(Y2021YJ02);中国农业科学院科技创新工程(CAAS-XTCX2016008)

Spatiotemporal Characteristics and Reduction Approaches of Farmland N2O Emission in China

Yan Shengji1,2(), Shang Ziyin1,2, Deng Aixing1, Zhang Weijian1,2()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Center for Carbon Neutrality in Agriculture and Rural Region, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-01-22 Revised:2022-04-06 Online:2022-06-15 Published:2022-06-20
  • Contact: Zhang Weijian

摘要:

氧化亚氮(N2O)是全球第三大温室气体,农田生态系统是人为N2O排放的重要来源,约占全球人为排放的30%。明确我国农田N2O的排放特征、关键过程与影响因子,有助于因地制宜制定减排技术途径及行动方案。氮肥施用是农田N2O排放的关键因子,国家统计数据发现,我国农田氮肥用量在2001-2007年呈上升趋势,之后趋于稳定,2014年开始下降,其中华东地区用量最高;农田N2O排放总量也于2015年达到最高点,之后出现下降态势,总体呈现南高北低的特征。文献综合表明,农田N2O排放主要由土壤反硝化过程主导,人为氮素添加是决定排放高低的首要影响因子。基于上述结果,在选用氮高效作物品种降低土壤N2O排放的前提下,华东等施肥量高的地区可采取优化施肥比例、增施缓控释肥等途径,实现氮肥增效减量减排;在设施农地和果园等田间设施条件较好的农田,可采用水肥一体化滴灌等增效减排措施;在作物多熟种植地区,除了氮肥减量减排外,还可增加豆科作物布局,采用禾豆轮作等减排措施。最后,对农田N2O减排的科技创新和政策创设等方面提出了一些建议,包括完善农田N2O减排理论、创新智慧农业及高效施肥技术、健全碳监测评价体系以及碳减排激励政策与机制等,助力尽早实现我国碳达峰与碳中和目标。

关键词: 作物生产, 气候变化, 氧化亚氮, 关键过程, 影响因素, 减排途径

Abstract:

Nitrous oxide (N2O) is the world's third-most-polluting greenhouse gas, and the farming ecosystem is a major source of anthropogenic N2O emissions, accounting for roughly 30% of global anthropogenic N2O emissions. Clarifying the N2O emission characteristics of Chinese farms, as well as describing the key processes and main influencing factors, will aid in the exploration of technical emission reduction options and the development of an action plan. The main source of N2O emissions from cropland is nitrogen fertilizer application. According to national statistics, the amount of nitrogen fertiliser used in China grew from 2001 to 2007, then remained consistent until 2014, when it began to fall, with the highest application rate in East China. Cropland N2O emission in China peaked in 2015, and then gradually declined, the highest emission exiting in South and the lowest in North China. According to the literature analysis, this study further clarified that farmland N2O emissions were mainly dominated by soil denitrification process, and anthropogenic nitrogen addition was the first prominent factor to farmland N2O emissions. Based on the above findings, on the premise of selecting crop cultivars with nitrogen high efficiency and low soil N2O emission, this study put forward some targeted emission reduction approaches. In areas with high N application rate, for example, in East China the proportion of fertilizer could be adjusted and controlled releasing fertilizers could be applied. In areas with good facility in irrigation and fertilization, such as facility farmland and orchard, fertigation technique with drip irrigation could be adopted. In areas with multiple cropping, crop rotation with legume or green manure crops could be used to reduce N2O emission. Finally, some suggestions of scientific and technological innovations and policy making for N2O emission reduction were provided in this study, including innovations of N2O mitigation theory, smart technology of fertilization, carbon monitoring and evaluation system and carbon emission reduction incentive policies, so as to help achieve the national goal of carbon peak and carbon neutral as soon as possible.

Key words: Crop production, Climate change, N2O, Key processes, Influencing factors, Emission reduction approach

表1

N2O emission factors of different crop planting regions kg N2O-N/kg N输入量 kg N2O-N/kg N input

省(市、区)
Province (municipality and autonomous region)
N2O排放因子
N2O emission factor
范围
Range
内蒙古,新疆,甘肃,青海,西藏,陕西,山西,宁夏
Inner Mongolia, Xinjiang, Gansu, Qinghai, Tibet, Shaanxi, Shanxi, Ningxia
0.0056 0.0015~0.0085
黑龙江,吉林,辽宁
Heilongjiang, Jilin, Liaoning
0.0114 0.0021~0.0258
北京,天津,河北,河南,山东
Beijing, Tianjin, Hebei, Henan, Shandong
0.0057 0.0014~0.0081
浙江,上海,江苏,安徽,江西,湖南,湖北,四川,重庆
Zhejiang, Shanghai, Jiangsu, Anhui, Jiangxi, Hunan, Hubei, Sichuan, Chongqing
0.0109 0.0026~0.0220
广东,广西,海南,福建
Guangdong, Guangxi, Hainan, Fujian
0.0178 0.0046~0.0228
云南,贵州
Yunnan, Guizhou
0.0106 0.0025~0.0218

图1

我国农田氮肥施用的时间(a)和空间(b)特征 地图来源于全国地理信息资源目录服务系统(https://www.webmap.cn/),下同

图2

我国农田N2O排放的时间(a)和空间(b)特征

图3

土壤N2O排放的关键过程(a)和主要影响因素(b) AMO:氨单加氧酶,HAO:羟胺氧化还原酶,NXR:亚硝酸盐氧化还原酶,NR:硝酸盐还原酶,Nar/Nap:硝酸异化还原酶,NrfA:细胞色素C亚硝酸盐还原酶,NiRK:含铜的亚硝酸盐还原酶,NiRS:含有细胞色素cd1的亚硝酸盐还原酶,NOR:NO还原酶,NOS:N2O还原酶,“ ”表示正效应,“ ”表示负效应,“ ”表示正效应和负效应并存

[1] Intergovernmental Panel on Climate Change. Climate Change 2021:The Physical Science Basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2021.
[2] Tian H, Xu R, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586(7828):248-256.
doi: 10.1038/s41586-020-2780-0
[3] Intergovernmental Panel on Climate Change. Climate Change 2007:Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
[4] National Coordination Committee on Climate Change. Second National Communication on Climate Change of the People's Republic of China. Beijing: China Planning Press, 2012.
[5] Intergovernmental Panel on Climate Change. Mitigation pathways compatible with 1.// Global Warming of 1.5℃. Cambridge: Cambridge University Press, 2018.
[6] Net zero traker. [2021-11-25]. https://zerotracker.net/.
[7] 陈迎, 巢清尘. 碳达峰、碳中和100问. 北京: 人民日报出版社, 2021.
[8] 张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021, 54(18):3892-3902.
[9] 严圣吉, 邓艾兴, 尚子吟, 等. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 作物学报, 2022, 48(4):1-13.
[10] Ma R, Yu K, Xiao S, et al. Data-driven estimates of fertilizer-induced soil NH3,NO and N2O emissions from croplands in China and their climate change impacts. Global Change Biology, 2022, 28(3):1008-1022.
doi: 10.1111/gcb.15975
[11] Sosulski T, Szara E, Szymanska M, et al. Soil N2O emissions under conventional tillage conditions and from forest soil. Soil and Tillage Research, 2019, 190:86-91.
doi: 10.1016/j.still.2019.03.002
[12] 曹文超, 宋贺, 王娅静, 等. 农田土壤N2O排放的关键过程及影响因素. 植物营养与肥料学报, 2019, 25(10):1781-1798.
[13] 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020, 39(4):842-851.
[14] 程功, 刘廷玺, 李东方, 等. 生物炭和秸秆还田对干旱区玉米农田土壤温室气体通量的影响. 中国生态农业学报(中英文), 2019, 27(7):1004-1014.
[15] Zou J, Lu Y, Huang Y. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000. Environmental Pollution, 2010, 158(2):631-635.
doi: 10.1016/j.envpol.2009.08.026
[16] 李艳春, 王义祥, 王成己, 等. 福建省农业生态系统氧化亚氮排放量估算及特征分析. 中国生态农业学报, 2014, 22(2):225-233.
[17] 张凡, 王政, 李旭祥. 西北旱区农田土壤N2O排放空间变化特征及影响因素探讨. 地球环境学报, 2016, 7(3):301-307.
[18] 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020.
[19] 国家发展和改革委员会应对气候变化司. 省级温室气体清单编制指南(试行), 2011.
[20] Gerber J S, Carlson K M, Makowski D, et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Global Change Biology, 2016, 22(10):3383-3394.
doi: 10.1111/gcb.13341 pmid: 27185532
[21] Richardson D, Felgate H, Watmough N, et al. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle could enzymic regulation hold the key?. Trends in Biotechnology, 2009, 27(7):388-397.
doi: 10.1016/j.tibtech.2009.03.009 pmid: 19497629
[22] Signor D, Cerri C E P. Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuária Tropical, 2013, 43(3):322-338.
doi: 10.1590/S1983-40632013000300014
[23] 刘秀红, 杨庆, 吴昌永, 等. 不同污水生物脱氮工艺中N2O释放量及影响因素. 环境科学学报, 2006, 26(12):1940-1947.
[24] Wrage N, van Groenigen J W, Oenema O, et al. A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Communications in Mass Spectrometry, 2005, 19(22):3298-3306.
pmid: 16220527
[25] Kraft B, Tegetmeyer H E, Sharma R, et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science, 2014, 345(6197):676-679.
doi: 10.1126/science.1254070
[26] Zhang J, Tian H, Shi H, et al. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Global Change Biology, 2020, 26(11):6116-6133.
doi: 10.1111/gcb.15290
[27] Chen H, Li X, Hu F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology, 2013, 19(10):2956-2964.
doi: 10.1111/gcb.12274
[28] Chen H, Zheng C, Chen F, et al. Less N2O emission from newly high-yielding cultivars of winter wheat. Agriculture Ecosystems and Environment, 2021, 320:107557.
doi: 10.1016/j.agee.2021.107557
[29] Li L, Zheng Z, Wang W, et al. Terrestrial N2O emissions and related functional genes under climate change: A global meta-analysis. Global Change Biology, 2020, 26(2):931-943.
doi: 10.1111/gcb.14847
[30] Wang Y, Guo J, Vogt R D, et al. Soil pH as the chief modifier for regional nitrous oxide emissions: New evidence and implications for global estimates and mitigation. Global Change Biology, 2018, 24(2):617-626.
doi: 10.1111/gcb.13816
[31] 谭立山. 农业土壤N2O产生途径及其影响因素研究进展. 亚热带农业研究, 2017, 13(3):196-204.
[32] Li Y, Lin E, Han X, et al. Effects of elevated carbon dioxide concentration on nitrous oxide emissions and nitrogen dynamics in a winter-wheat cropping system in northern China. Mitigation and Adaptation Strategies for Global Change, 2015, 20(7):1027-1040.
doi: 10.1007/s11027-013-9513-8
[33] Li Z L, Tang Z, Song Z P, et al. Variations and controlling factors of soil denitrification rate. Global Change Biology, 2022, 28(6):2133-2145.
doi: 10.1111/gcb.16066
[34] Ding J, Fang F, Lin W, et al. N2O emissions and source partitioning using stable isotopes under furrow and drip irrigation in vegetable field of North China. Science of the Total Environment, 2019, 665:709-717.
doi: 10.1016/j.scitotenv.2019.02.053
[35] 陈友德, 赵杨, 高杜娟, 等. 稻油不同轮作模式对农田甲烷和氧化亚氮排放的影响. 环境科学, 2020, 41(10):4701-4710.
[36] Mazzoncini M, Antichi D, Bene C D, et al. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. European Journal of Agronomy, 2016, 77:156-165.
doi: 10.1016/j.eja.2016.02.011
[37] Akiyama H, Yagi K, Yan X Y. Direct N2O emissions from rice paddy fields: summary of available data. Global Biogeochemical Cycles, 2005, 19(1):1-10.
[38] Johannes L, Annette C, Caroline A. M, et al. Biochar in climate change mitigation. Nature Geoscience, 2021, 14(12):883-892.
doi: 10.1038/s41561-021-00852-8
[39] Liu Q, Liu B, Zhang Y, et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Global Change Biology, 2019, 25(6):2077-2093.
doi: 10.1111/gcb.14613 pmid: 30844112
[40] 中华人民共和国农业农村部. 农业农村部关于加快发展农业社会化服务的指导意见. (2021-07-07)[2022-01-10]. http://www.moa.gov.cn/govpublic/NCJJTZ/202107/t20210712_6371571.htm.
[41] 张卫建, 张俊, 张会民, 等. 稻田土壤培肥与丰产增效耕作理论和技术. 北京: 科学出版社, 2021.
[1] 李文旭, 吴政卿, 雷振生, 姜桂英. 河南省主要气象因子变化及其对主要粮食作物单产的影响特征[J]. 作物杂志, 2021, (1): 124–134
[2] 严华,晏中文,雷杰. 新源县1981-2018年气候变化特征及其对春玉米的影响[J]. 作物杂志, 2020, (2): 140–146
[3] 许瀚林,刘瑶,袁晓峰,潘婕,瓮巧云,吕爱枝,刘颖慧. 气候变化对冀西北青贮玉米种植布局影响的预测[J]. 作物杂志, 2020, (1): 124–129
[4] 刘颖慧,郭明,贾树利,尹建国. 影响青贮玉米品质因素研究进展[J]. 作物杂志, 2018, (2): 6–10
[5] 吴建富,卢志红,胡丹丹. 科学认识有机肥料在农业生产中的作用[J]. 作物杂志, 2017, (5): 1–6
[6] 李少昆,王克如,谢瑞芝,李璐璐,明博,侯鹏,初振东,张万旭,刘朝巍. 玉米子粒机械收获破碎率研究[J]. 作物杂志, 2017, (2): 76–80
[7] 陈霞燕,王连喜,任景全,郭春明,李琪,李莹莹. 吉林省春玉米生产潜力及其敏感性分析[J]. 作物杂志, 2016, (6): 91–98
[8] 谢阳姣,何志鹏,李耀燕,闫国跃,符标芳. 苦玄参药材中苦玄参苷IA和IB差异积累的影响因素分析[J]. 作物杂志, 2016, (3): 89–93
[9] 赵苗苗, 张文忠, 裴瑶, 等. 农田温室气体N2O排放研究进展[J]. 作物杂志, 2013, (4): 25–31
[10] 严雯奕, 叶胜海, 董彦君, 等. 植物叶片衰老相关研究进展[J]. 作物杂志, 2010, (4): 4–9
[11] 华国栋, 李冠喜, 浦汉春, 等. 小麦种子活力的影响因素与控制及种子贮藏技术[J]. 作物杂志, 2009, (6): 89–91
[12] 黄中艳. 云南烤烟大田生长中后期气候变化及其影响[J]. 作物杂志, 2009, (5): 14–18
[13] 王芳. 无土基质栽培生产脱毒马铃薯微型薯的关键技术[J]. 作物杂志, 2008, (5): 97–100
[14] 凌启鸿. 论中国特色作物栽培科学的成就与振兴[J]. 作物杂志, 2003, (1): 1–7
[15] 赵广才, 马兴林. 作物栽培研究与现代生态农业[J]. 作物杂志, 2003, (1): 8–10
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!