作物杂志,2023, 第3期: 51–57 doi: 10.16035/j.issn.1001-7283.2023.03.007

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

玉米―大刍草渗入系群体的剑叶遗传基础解析

高沐甜1(), 邱冠杰1, 朱通通1, 李瑞莲1,2,3, 邓敏1,2,3, 罗红兵1,2,3, 黄成1,2,3()   

  1. 1湖南农业大学农学院,410128,湖南长沙
    2作物生理与分子生物学教育部重点实验室,410128,湖南长沙
    3湖南省玉米工程技术研究中心,410128,湖南长沙
  • 收稿日期:2022-03-29 修回日期:2022-04-06 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 黄成,主要从事玉米分子遗传育种研究,E-mail:hc66@hunau.edu.cn
  • 作者简介:高沐甜,主要从事玉米种质资源创新与利用研究,E-mail:gmt66@stu.hunau.edu.cn
  • 基金资助:
    长沙市杰出创新青年培养计划项目(kq2209016);湖南省普通高校青年骨干教师培养项目;湖南省作物种质创新与资源利用重点实验室开放研究项目(19KFXM10);湖南农业大学青年科学基金项目(19QN16)

Dissecting the Genetic Basis of Flag Leaf in Maize-Teosinte Introgression Line Population

Gao Mutian1(), Qiu Guanjie1, Zhu Tongtong1, Li Ruilian1,2,3, Deng Min1,2,3, Luo Hongbing1,2,3, Huang Cheng1,2,3()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Key Laboratory of the Ministry of Education for Crop Physiology and Molecular Biology, Changsha 410128, Hunan, China
    3Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, Hunan, China
  • Received:2022-03-29 Revised:2022-04-06 Online:2023-06-15 Published:2023-06-16

摘要:

玉米剑叶是玉米雌穗苞叶顶端的延伸,其不仅受气候和土壤等环境因素影响,同时也受遗传因素控制。利用一套由玉米自交系W22与玉米野生祖先种大刍草(Zea mays ssp. parviglumis)杂交衍生得到的包含866个家系的渗入系材料,结合19 838个SNP分子标记,采用R/qtl的多QTL模型对玉米剑叶进行QTL定位分析。结果显示,共检测到9个控制玉米剑叶的QTL,分别位于第1、2、3、4、5、7和8号染色体。9个QTL共解释30.94%的表型变异,单个QTL的表型贡献率变幅为1.76%~11.51%,加性效应的变幅为-0.03~0.12,表明玉米剑叶是由多基因控制的数量性状。相关性分析表明,玉米剑叶与株高、穗位高、茎长和叶绿素含量呈显著正相关,与百粒重、粒宽和粒厚呈显著负相关。进一步利用转录组数据对最大效应QTL(qFL3-1)进行候选基因表达分析,筛选出5个可能的候选基因。

关键词: 玉米, 大刍草, 渗入系群体, 剑叶, 遗传基础

Abstract:

Maize flag leaves are extended from the tips of ear husks, which are not only affected by environmental factors such as climate and soil, but also controlled by genetic factors. Using a large population of 866 maize-teosinte introgression lines that had been genotyped with 19 838 SNP markers, we performed a QTL mapping for maize flag leaf by applying the multiple QTL model in R/qtl. The results showed that a total of nine QTLs for maize flag leaf were located on chromosome 1, 2, 3, 4, 5, 7 and 8. All nine loci attributed to 30.94% of the phenotypic variation, with the phenotypic contribution rate and additive effect of each QTL ranged from 1.76% to 11.51% and from -0.03 to 0.12, respectively, indicating that the maize flag leaf was a quantitative trait controlled by a number of loci. Pearson correlation coefficient analysis showed that maize flag leaf was significantly positively correlated with plant height, ear height, stem length, and chlorophyll content, and it was significantly negatively correlated with 100-seed weight, seed width, and seed thickness. Further analysis of candidate genes for the largest effect QTL (qFL3-1) using the transcriptome data, five possible candidate genes were screened out.

Key words: Maize, Teosinte, Introgression line population, Flag leaf, Genetic basis

图1

渗入系群体剑叶表型分析 (a) 代表性家系的剑叶表型;比例尺:10cm。(b) 剑叶表型比例分布

图2

剑叶与其他性状相关性分析 IL:茎长;CC:叶绿素含量;EH:穗位高;PH:株高;SL:粒长;SD:茎粗;SGR:种子出苗率;ST:粒厚;SW:粒宽;HSW:百粒重;红色表示正相关;蓝色表示负相关;“*”:0.05水平显著;“**”:0.01水平显著

图3

渗入系群体剑叶QTL图谱 同一染色体上不同QTL用不同颜色表示;水平红色虚线代表显著QTL的LOD阈值

表1

剑叶QTL定位结果

QTLs 染色体
Chromosome
标记区间
Marker interval
位置
Position (cM)
LOD值
LOD value
加性效应
Additive effect
显性效应
Dominant effect
贡献率
Contribution rate (%)
qFL1-1 1 m00191~m01743 49.98 7.23 0.04 0.04 2.86
qFL1-2 1 m04426~m05704 89.19 6.95 0.05 0.02 2.75
qFL2-1 2 m08696~m12985 106.05 4.74 0.05 -0.01 1.86
qFL3-1 3 m16430~m16819 73.50 27.49 0.12 0.02 11.51
qFL4-1 4 m21495~m22749 79.50 8.03 0.07 -0.06 3.18
qFL5-1 5 m25472~m25799 28.56 5.81 0.05 0.00 2.29
qFL5-2 5 m29042~m29724 89.22 4.49 0.05 0.00 1.76
qFL7-1 7 m39972~m40321 119.97 5.25 -0.03 -0.03 2.07
qFL8-1 8 m42951~m44940 106.04 4.93 -0.04 0.02 1.94

图4

qFL3-1位点候选基因分析 (a) qFL3-1位点LOD图谱;水平红色虚线代表显著QTL的LOD阈值;垂直蓝色区域代表qFL3-1位点的置信区间。(b) 置信区间内基因结构图。(c) 置信区间内基因表达图谱

表2

qFL3-1候选基因

基因编号
Gene ID
染色体
Chromosome
基因起始位置
Gene starting position (bp)
基因终止位置
Gene end position (bp)
功能注释
Functional annotation
Zm00001d042099 3 150 690 594 150 691 502 谷胱甘肽S-转移酶
Zm00001d042104 3 150 759 060 150 760 119 谷胱甘肽S-转移酶
Zm00001d042117 3 151 572 267 151 577 836 吡咯啉-5-羧酸还原酶
Zm00001d042134 3 152 750 251 152 755 325 氨基酸通透酶
Zm00001d042135 3 152 759 924 152 768 979 氨基酸通透酶
[1] 徐文伟, 曹镇北. 我国玉米地方品种剑叶长度的初步观察. 中国种业, 1986(3):14-15.
[2] Ji H C, Lee H B, Brewbaker J L. Inheritance of long husk leaves in maize. Journal of the Faculty of Agriculture, 2008, 53(2):379-384.
[3] Cantrell R G, Geadelmann J L. Contribution of husk leaves to maize grain yield. Crop Science, 1981, 21(4):544-546.
doi: 10.2135/cropsci1981.0011183X002100040017x
[4] Sawada O, Ito J, Fujita K. Characteristics of photosynthesis and translocation of 13C-labelled photosynthate in husk leaves of sweet corn. Crop Science, 1995, 35(2):480-485.
doi: 10.2135/cropsci1995.0011183X003500020033x
[5] Cantrell R G, Geadelmann J L. Inheritance of husk leaves in maize. Crop Science, 1981, 21(4):541-544.
doi: 10.2135/cropsci1981.0011183X002100040016x
[6] Matsuoka Y, Vigouroux Y, Goodman M M, et al. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9):6080-6084.
[7] Piperno D R, Ranere A J, Holst I, et al. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13):5019-5024.
[8] Van Heerwaarden J, Doebley J, Briggs W H, et al. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3):1088-1092.
[9] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127(7):1309-1321.
doi: 10.1016/j.cell.2006.12.006 pmid: 17190597
[10] Studer A, Zhao Q, Ross-Ibarra J, et al. Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43(11):1160-1163.
doi: 10.1038/ng.942
[11] Wang H, Nussbaum-Wagler T, Li B, et al. The origin of the naked grains of maize. Nature, 2005, 436(7051):714-719.
doi: 10.1038/nature03863
[12] Wright S I, Bi I V, Schroeder S G, et al. The effects of artificial selection on the maize genome. Science, 2005, 308(5726):1310-1314.
doi: 10.1126/science.1107891 pmid: 15919994
[13] Wills D M, Whipple C J, Takuno S, et al. From many,one:genetic control of prolificacy during maize domestication. PLoS Genetics, 2013, 9(6):e1003604.
doi: 10.1371/journal.pgen.1003604
[14] Huang C, Chen Q Y, Xu G H, et al. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 2016, 58(1):81-90.
doi: 10.1111/jipb.12358
[15] McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13.
[16] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[17] 柳志华, 肖仁杰, 徐莹, 等. 利用大刍草渗入系群体定位玉米株高和穗位高QTL. 湖南农业大学学报(自然科学版), 2020, 46(4):381-385.
[18] 李芳, 柳志华, 胡锦祥, 等. 利用玉米-大刍草渗入系群体解析玉米茎长和茎粗的遗传基础. 农业生物技术学报, 2021, 29(2):216-223.
[19] 胡锦祥, 肖仁杰, 柳志华, 等. 基于玉米野生近缘种大刍草渗入系群体的出苗率QTL定位分析. 植物遗传资源学报, 2020, 21(6):1561-1567.
doi: 10.13430/j.cnki.jpgr.20200603001
[20] 肖仁杰, 柳志华, 胡锦祥, 等. 玉米穗位叶叶绿素含量的QTL定位分析. 分子植物育种, 2021, 19(14):4703-4707.
[21] Xu G H, Wang X F, Huang C, et al. Complex genetic architecture underlies maize tassel domestication. New Phytologist, 2017, 214(2):852-864.
doi: 10.1111/nph.14400 pmid: 28067953
[22] Vaish S, Gupta D, Mehrotra R, et al. Glutathione S-transferase: A versatile protein family. 3 Biotech, 2020, 10(7):321.
doi: 10.1007/s13205-020-02312-3 pmid: 32656054
[23] Ruszkowski M, Nocek B, Forlani G, et al. The structure of Medicago truncatula δ1-pyrroline-5-carboxylate reductase provides new insights into regulation of proline biosynthesis in plants. Frontiers in Plant Science, 2015, 6:869.
doi: 10.3389/fpls.2015.00869 pmid: 26579138
[24] Mattioli R, Marchese D, D’Angeli S, et al. Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. Plant Molecular Biology, 2008, 66(3):277-288.
doi: 10.1007/s11103-007-9269-1 pmid: 18060533
[25] Mattioli R, Costantino P, Trovato M. Proline accumulation in plants: not only stress. Plant Signaling & Behavior, 2009, 4(11):1016-1018.
[26] Funck D, Winter G, Baumgarten L, et al. Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 2012, 12(1):1-12.
doi: 10.1186/1471-2229-12-1
[27] Okumoto S, Koch W, Tegeder M, et al. Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. Journal of Experimental Botany, 2004, 55(406):2155-2168.
pmid: 15361541
[1] 温胜慧, 杨俊伟, 王洋, 李公建, 翁建峰, 段灿星, 贾鑫, 王建军. 玉米抗真菌病害基因挖掘与分子育种利用研究进展[J]. 作物杂志, 2023, (3): 1–11
[2] 常青, 李立军, 渠佳慧, 张艳丽, 韩冬雨, 赵鑫瑶. 土默川平原麦后复种饲用玉米‖油菜模式的增产优势及氮素利用效率[J]. 作物杂志, 2023, (3): 167–174
[3] 郭书磊, 王瑛, 魏良明, 张新, 刘焱, 吴伟华, 卢道文, 雷晓兵, 王振华, 鲁晓民. 不同生态条件下玉米产量影响因素分析[J]. 作物杂志, 2023, (3): 205–214
[4] 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 曲海涛, 李福林, 张淑琴, 李光发. 基于玉米DH系分离群体叶鞘、花丝、花药与穗轴颜色性状的遗传分析[J]. 作物杂志, 2023, (3): 75–79
[5] 张盼盼, 李川, 张美微, 赵霞, 黄璐, 刘京宝, 乔江方. 氮肥减施下添加硝化抑制剂对夏玉米植株及土壤氮素积累分配及产量的影响[J]. 作物杂志, 2023, (2): 145–150
[6] 崔淑娜, 王晔, 卢雨晴, 潘金豹, 张秋芝. 玉米穗三叶与产量的相关和通径分析[J]. 作物杂志, 2023, (2): 201–206
[7] 孟亚轩, 姚旭航, 周宝元, 刘颖慧, 袁进成, 马玮, 赵明. 青贮玉米混合青贮研究进展[J]. 作物杂志, 2023, (2): 24–29
[8] 于永涛, 张楠, 谢利华, 李光玉, 刘建华, 李武, 李高科, 胡建广. 消费者在甜玉米种质食味品质鉴评中的偏好性初探[J]. 作物杂志, 2023, (1): 14–19
[9] 张东霞, 秦安振. 冬小麦-夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022, (6): 145–151
[10] 乔江方, 张盼盼, 邵运辉, 刘京宝, 李川, 张美微, 黄璐. 不同种植密度和品种对夏玉米物质生产和产量构成的影响[J]. 作物杂志, 2022, (6): 186–192
[11] 郭欢乐, 汤彬, 李涵, 曹钟洋, 曾强, 刘良武, 陈志辉. 湖南省玉米地方品种表型性状综合评价及类群划分[J]. 作物杂志, 2022, (6): 33–41
[12] 续创业, 张建军, 周刚, 张铠鹏, 朱晓惠, 王甲玺, 党翼, 赵刚, 王磊, 李尚中, 樊廷录. 陇东旱塬密植高产机械粒收玉米新品种筛选与评价[J]. 作物杂志, 2022, (5): 104–110
[13] 李龙, 肖让, 张永玲. 氮磷钾配施对制种玉米产量及经济效益的影响[J]. 作物杂志, 2022, (5): 111–117
[14] 历艳璐, 王俊鹏, 于欣志, 魏宏磊, 陈麒宇, 赵洪祥, 徐晨, 边少锋, 张治安. 冷凉区不同地膜覆盖对玉米干物质和氮素积累与分配的影响[J]. 作物杂志, 2022, (5): 124–129
[15] 张建业, 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印. 盐碱胁迫下S-诱抗素对玉米萌发及生长的影响[J]. 作物杂志, 2022, (5): 167–173
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!