作物杂志,2023, 第5期: 98–103 doi: 10.16035/j.issn.1001-7283.2023.05.014

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

黑暗和强光下脱水对小麦离体叶片光系统活性的影响

杨程1(), 张德奇1(), 杜思梦1, 张丽佳2, 靳海洋1, 李滢1, 邵运辉1, 王汉芳1, 方保停1, 李向东1(), 刘美君2()   

  1. 1河南省农业科学院小麦研究所/河南省小麦产量—品质协同提升工程研究中心/郑州大学研究生培养基地/农业农村部中原地区作物栽培科学观测实验站/河南省小麦生物学重点实验室,450002,河南郑州
    2新疆农业大学草业学院,830052,新疆乌鲁木齐
  • 收稿日期:2022-03-29 修回日期:2022-04-06 出版日期:2023-10-15 发布日期:2023-10-16
  • 通讯作者: 李向东,主要从事小麦栽培与耕作研究,E-mail:hnlxd@126.com; 刘美君为共同通信作者,主要从事植物逆境生理研究,E-mail:lebaby7@163.com
  • 作者简介:杨程,主要从事作物逆境生理与调控研究,E-mail:luckytiger.com@163.com;|张德奇为共同第一作者,主要从事小麦栽培与耕作研究,E-mail:dqzhang3@163.com
  • 基金资助:
    国家重点研发计划(2022YFD2300202);河南省现代农业产业技术体系建设专项(HARS-22-01-G5);中原科技创新领军人才计划资助项目(224200510028);河南省农业科学院科技创新团队

Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro

Yang Cheng1(), Zhang Deqi1(), Du Simeng1, Zhang Lijia2, Jin Haiyang1, Li Ying1, Shao Yunhui1, Wang Hanfang1, Fang Baoting1, Li Xiangdong1(), Liu Meijun2()   

  1. 1Wheat Research Institute, Henan Academy of Agricultural Sciences/Henan Engineering Research Center for Wheat Yield-Quality Simultaneous Improvement/Zhengzhou University Graduate Training Base/Scientific Observing and Experimental Station of Crop Cultivation in Central Plains, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory of Wheat Biology, Zhengzhou 450002, Henan, China
    2College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2022-03-29 Revised:2022-04-06 Online:2023-10-15 Published:2023-10-16

摘要:

脱水是小麦叶片在干旱条件下的自然失水过程,为了探明黑暗和强光下脱水对小麦叶片光系统的影响机制及其差异,采用叶绿素荧光动力学技术,分析了黑暗和强光下脱水不同时间对小麦离体叶片光系统活性的影响。结果表明,强光加速了叶片脱水过程,黑暗脱水条件下,叶片的最大光化学效率随着脱水程度的增加并没有出现明显下降,而强光下显著下降,且随着脱水程度加剧而下降速度逐渐加快;强光脱水条件下,QA到QB电子传递受到抑制,且抑制程度大于黑暗脱水;无论是黑暗还是强光脱水条件,光系统II(PSII)供体侧活性均没有显著变化;PSII单元间的偶联程度在黑暗条件下没有明显变化,在强光脱水条件下则大幅下降。最终表明,脱水导致的PSII活性和光合性能的下降依赖于光照,强光下随着脱水程度的加剧,PSII对光能的吸收和传递活性以及PSII单元间能量偶联程度逐渐下降,而在黑暗条件下,仅严重脱水时才会导致最大光化学效率、反应中心数目以及QA到QB电子传递活性的小幅下降。

关键词: 小麦, 脱水, 干旱, 光合作用, 光系统II

Abstract:

Dehydration is the natural process of wheat leaves under drought conditions. In order to explore the mechanism of dark and strong light dehydration on photosynthetic mechanism and their differences in detached wheat leaves, the effects of dehydration with dark and strong light on the activity of wheat photosystem were determined and analyzed by using chlorophyll fluorescence dynamics technology. The results showed that the strong light accelerated the leaf dehydration process. Under the condition of dark dehydration, the maximum photochemical efficiency did not decrease significantly with the increase of dehydration degree, but decreased significantly under strong light, and the decline rate gradually accelerated with the increase of dehydration degree. Under the condition of strong light dehydration, the electron transfer from QA to QB was inhibited, and the degree of inhibition was greater than that of dark dehydration. There was no significant change in photosystem II (PSII) donor side activity under either dark or strong light dehydration conditions. The coupling degree between PSII units did not change significantly under dark conditions, but decreased significantly under strong light dehydration. Finally, it showed that the decline of PSII activity and photosynthetic performance caused by dehydration depended on light, under strong light, with the increase of dehydration degree, the absorption and transfer activity of PSII to light energy and the degree of energy coupling between PSII units gradually decline, while under dark conditions, only severe dehydration will lead to the maximum photochemical efficiency, the number of reaction centers and the electron transfer activity from QA to QB decreased slightly.

Key words: Wheat, Dehydration, Drought, Photosynthesis, Photosystem II

表1

叶绿素快速荧光诱导动力学曲线参数及公式

参数Parameter 计算方法Method of calculation
FM 暗适应后照光获得的最大荧光强度
FO 叶绿素荧光诱导动力学曲线20μs的荧光强度
Fv Fv=FM?FO
Ft t时的荧光强度F
FK K点(0.3ms)的荧光强度
FJ J点(3ms)的荧光强度
FI I点(30ms)的荧光强度
VJ VJ=(FJ?FO)/(FM?FO)
VI VI=(FI ?FO)/(FM ?FO)
MO MO=4(F300μs?FO)/(FM?FO)
ΨO ψO=1?VJ
φPO φPO=Fv/FM=(FM?FO)/FM
φEO φEo=ETo/ABS=[1?(FO/FM)]?ψO
φDO φDO=1?φPO
φRO φRO=φPO×(1?VI)
σRO σRO=(1?VI)/(1?VJ)
ABS/RC ABS/RC=MO?(1/ VJ)?(1/φPO)
RC/CSm RC/CSm=φPO×(VJ/MOFM
PIABS PIABS=(RC/ABS)×[φPO/(1?φPO)]×[ψO/(1?ψO)]

图1

强光和黑暗脱水不同时间下小麦叶片的相对含水量

图2

黑暗和强光脱水不同时间小麦叶片的OJIP曲线

图3

黑暗和强光下脱水不同时间对OJIP曲线O-J段荧光的影响

图4

黑暗和强光处理不同时间对OJIP曲线O-K段荧光的影响

图5

黑暗和强光处理下不同相对含水量叶片荧光参数的变化

[1] 杨程, 张德奇, 杜思梦, 等. 黑暗诱导衰老对不同年代冬小麦品种旗叶光系统Ⅱ功能的影响. 应用生态学报, 2018, 29(8):2525-2531.
[2] Yang C, Zhang D, Li X, et al. Drought effects on photosynthetic performance of two wheat cultivars contrasting in drought. New Zealand Journal of Crop and Horticultural Science, 2021, 49(1):17-29.
doi: 10.1080/01140671.2020.1851264
[3] 陈新宜, 宋宇航, 张孟寒, 等. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用. 作物学报, 2022, 48(2):478-487.
doi: 10.3724/SP.J.1006.2022.11026
[4] 和娟, 唐燕, 李晓瑞, 等. 水分亏缺对小麦芒和旗叶光合特性及蔗糖、淀粉合成的影响. 干旱地区农业研究, 2021, 39(6):53-61,78.
[5] 孙爽, 杨晓光, 张镇涛, 等. 华北平原不同等级干旱对冬小麦产量的影响. 农业工程学报, 2021, 37(14):69-78.
[6] 胡阳阳, 卢红芳, 刘卫星, 等. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018, 44(4):591-600.
[7] 毛浩田, 陈梦莹, 吴楠, 等. 干旱胁迫对不同倍性小麦和八倍体小黑麦苗期光合能力与抗氧化系统的影响. 麦类作物学报, 2018, 38(10):1246-1254.
[8] Luisa C S M, Barbara L, Adriana B, et al. Antioxidant system in Boea hygroscopica: Changes in response to desiccation and red ration. Phytochemistry, 1994, 35(3):561-565.
doi: 10.1016/S0031-9422(00)90561-2
[9] 李鹏民, 高辉远,Reto J S. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6):559-566.
[10] Rahma G A B C, Arafet M B, Walid D A B, et al. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology,B:Biology, 2018, 183(6):275-287.
doi: 10.1016/j.jphotobiol.2018.04.047
[11] Yang C, Zhang Z, Gao H, et al. Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves. BMC Plant Biology, 2014, 14(1):240.
doi: 10.1186/s12870-014-0240-4
[12] Zhou R, Kan X, Chen J, et al. Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescenc, P700 and cyclic electron flow signals. Environmental and Experimental Botany, 2019, 158(2):51-62.
doi: 10.1016/j.envexpbot.2018.11.005
[13] Zeng F, Wang G, Liang Y, et al. Disentangling the photosynthesis performance in japonica rice during natural leaf senescence using OJIP fluorescence transient analysis. Functional Plant Biology, 2021, 48(2):206-217.
doi: 10.1071/FP20104 pmid: 33099327
[14] Jin L, Che X, Zhang Z, et al. The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves. Chemosphere, 2017, 168(2):1498-1505.
doi: 10.1016/j.chemosphere.2016.12.002
[15] Badr A, Brüggemann W. Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica. 2020, 58:638-645.
doi: 10.32615/ps.2020.014
[16] Chen S, Yang J, Zhang M, et al. Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environmental and Experimental Botany, 2016, 122(2):126-140.
doi: 10.1016/j.envexpbot.2015.09.011
[17] Li P, Ma F. Different effects of light irradiation on the photosynthetic electron transport chain during apple tree leaf dehydration. Plant Physiology and Biochemistry, 2012, 55:16-22.
doi: 10.1016/j.plaphy.2012.03.007 pmid: 22484842
[18] Mihaljevi I, Lepedu H, Imi D, et al. Photochemical efficiency of photosystem II in two apple cultivars affected by elevated temperature and excess light in vivo. South African Journal of Botany, 2020, 130:316-326.
doi: 10.1016/j.sajb.2020.01.017
[19] Mathur S, Jajoo A, Mehta P, et al. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 2010, 13(1):1-6.
[20] 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSII供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系. 植物生理学报, 2015, 51(6):969-976.
[1] 王义凡, 任宁, 董向阳, 赵亚南, 叶优良, 汪洋, 黄玉芳. 控释尿素与普通尿素配施对小麦产量、氮素吸收及经济效益的影响[J]. 作物杂志, 2023, (5): 117–123
[2] 杨梅, 杨卫君, 高文翠, 贾永红, 张金汕. 生物质炭与氮肥配施对灌区冬小麦干物质转运、农艺性状及产量的影响[J]. 作物杂志, 2023, (5): 138–144
[3] 黄杰, 葛昌斌, 王君, 曹燕燕, 乔冀良, 廖平安, 宋丹阳, 卢雯瑩. 基于主成分回归模型的漯河市小麦相对气象千粒重的模拟模型[J]. 作物杂志, 2023, (5): 212–218
[4] 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023, (5): 238–248
[5] 刘书含, 陈磊, 张建朝, 胡甘, 孙君艳, 刘东涛, 王军卫. TMS5基因在小麦BNS不育系育性转换中的差异表达分析[J]. 作物杂志, 2023, (5): 24–29
[6] 张东旭, 胡丹珠, 闫金龙, 冯丽云, 邬志远, 张俊灵, 李岩华. 不同茬口晚播小麦喷施链霉菌剂对产量及光合特性的影响[J]. 作物杂志, 2023, (5): 255–263
[7] 宋桂成, 余桂红, 张鹏, 马鸿翔. 不同小麦品种(系)拔节期耐渍性评价[J]. 作物杂志, 2023, (5): 30–36
[8] 葛昌斌, 秦素研, 乔冀良, 王君, 齐双丽, 卢雯瑩, 张振永. 2001-2021年豫南和江苏淮河以南审定小麦品种农艺、品质性状和病害演变对比分析[J]. 作物杂志, 2023, (5): 49–58
[9] 张明伟, 丁锦峰, 朱新开, 郭文善. 稻茬过晚播小麦高产密度和氮肥调控效应分析[J]. 作物杂志, 2023, (4): 126–135
[10] 宋晓, 张珂珂, 岳克, 黄晨晨, 黄绍敏, 孙建国, 郭腾飞, 郭斗斗, 张水清, 裴敏楠. 不同氮效率品种小麦根际土壤酶活性和细菌群落的差异[J]. 作物杂志, 2023, (4): 188–194
[11] 姜珊, 刘佳, 曹亮, 任春元, 金喜军, 张玉先. 外源褪黑素对干旱胁迫下红小豆幼苗生长和产量的影响[J]. 作物杂志, 2023, (4): 202–209
[12] 傅晓艺, 王红光, 刘志连, 李东晓, 何明琦, 李瑞奇. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选[J]. 作物杂志, 2023, (4): 224–229
[13] 刘颖, 顾昀怿, 张伟杨, 杨建昌. 水分与氮素及其互作调控小麦产量和水氮利用效率研究进展[J]. 作物杂志, 2023, (4): 7–15
[14] 李宏生, 李绍祥, 杨忠慧, 杨家李, 刘琨, 熊世安, 李富乾, 郭辉, 杨木军. 温光敏两系杂交小麦杂交种纯度的表型和标记检测比较[J]. 作物杂志, 2023, (4): 71–76
[15] 赵鹏鹏, 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏. 小麦GzCIPK7-5B基因的生物信息学及表达分析[J]. 作物杂志, 2023, (4): 77–84
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!