作物杂志,2025, 第4期: 29–40 doi: 10.16035/j.issn.1001-7283.2025.04.004

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

基于SSR技术的马铃薯种质资源遗传多样性分析

王丹1(), 张志成2,3(), 韩海霞1, 韩娜1, 王春勇4, 王正1, 潘孟洋1, 李强5, 王懿茜2, 刘宇飞2, 张丹2   

  1. 1集宁师范学院生命科学与技术学院,012000,内蒙古乌兰察布
    2乌兰察布市农林科学研究所,012000,内蒙古乌兰察布
    3内蒙古农业大学农学院,010000,内蒙古呼和浩特
    4唐山市农业科学研究院,063000,河北唐山
    5乌兰察布市农牧业综合行政执法支队,012000,内蒙古乌兰察布
  • 收稿日期:2024-05-31 修回日期:2024-08-21 出版日期:2025-08-15 发布日期:2025-08-12
  • 通讯作者: 张志成,主要从事马铃薯新品种选育工作,E-mail:nmzzc1988@163.com
  • 作者简介:王丹,主要从事马铃薯遗传育种工作,E-mail:764922586@qq.com
  • 基金资助:
    内蒙古自然科学基金(2023QN03056);内蒙古自然科学基金(2021BS03010);内蒙古农牧业青年创新基金(2023QNJJN13);集宁师范学院博士基金(jsbsjj1707);集宁师范学院博士基金(jsbsjj2309)

Genetic Diversity Analysis of Potato Germplasm Resources Based on SSR Technology

Wang Dan1(), Zhang Zhicheng2,3(), Han Haixia1, Han Na1, Wang Chunyong4, Wang Zheng1, Pan Mengyang1, Li Qiang5, Wang Yiqian2, Liu Yufei2, Zhang Dan2   

  1. 1Jining Normal University, Ulanqab 012000, Inner Mongolia, China
    2Ulanqab Institute of Agricultural and Forestry Sciences, Ulanqab 012000, Inner Mongolia, China
    3Inner Mongolia Agricultural University, Hohhot 010000, Inner Mongolia, China
    4Tangshan Academy of Agricultural Sciences, Tangshan 063000, Hebei, China
    5Ulanqab Agricultural and Animal Husbandry Comprehensive Administrative Law Enforcement Detachment, Ulanqab 012000, Inner Mongolia, China
  • Received:2024-05-31 Revised:2024-08-21 Online:2025-08-15 Published:2025-08-12

摘要:

为明确马铃薯种质资源的亲缘关系,利用SSR分子标记对63份马铃薯种质资源的遗传多样性进行分析。结果显示,共扩增到164个多态性条带,其中多态性位点145个,平均条带数为5.13个。有效等位基因数、Nei’s遗传多样性指数和Shannon指数分别为1.7139、0.3927和0.5632,遗传距离范围为0.12~0.71。在遗传距离为0.180处将供试材料分为5个类群,聚类结果与区域高度一致。主成分分析表明,3个主成分的总变异量为45.04%,与聚类结果一致。利用SSR引物STL001、S192和S118构建了63份种质资源的DNA指纹图谱,并建立了二维码分子身份证。本研究为马铃薯资源利用和品种改良奠定基础。

关键词: 马铃薯, 种质资源, SSR分子标记, 遗传多样性, 分子身份证

Abstract:

To clarify the genetic relationship of potato germplasm resources, SSR markers were used to analyze the genetic diversity of 63 potato germplasm resources. The results showed that 164 polymorphic bands were amplified, including 145 polymorphic loci, the average number of bands was 5.13. The number of effective alleles, Nei’s genetic diversity index and Shannon index were 1.7139, 0.3927 and 0.5632, respectively, and the genetic distance ranged from 0.12 to 0.71. The tested materials could be divided into five groups at the genetic distance value of 0.180, and the clustering results were highly consistent with their geographical origins. The results of PCA for 63 germplasm resources showed that the total variation of the three principal components was 45.04%, and were consistent with the clustering results. DNA fingerprints of 63 germplasm resources were constructed using SSR primers STL001, S192 and S118, and QR code molecular identity cards were established. This research lays a foundation for potato resource utilization and variety improvement.

Key words: Potato, Germplasm resources, SSR molecular marker, Genetic diversity, Molecular ID card

表1

供试马铃薯品种(系)

编号
Number
品种(系)
Variety (line)
编号
Number
品种(系)
Variety (line)
编号
Number
品种(系)
Variety (line)
编号
Number
品种(系)
Variety (line)
编号
Number
品种(系)
Variety (line)
ZY001 YSZ-1 ZY014 YS165 ZY027 晋薯16号 ZY040 青薯168 ZY053 东农310
ZY002 YSZ-2 ZY015 Agria ZY028 同薯24号 ZY041 陇薯7号 ZY054 Jardinor
ZY003 Russet Burbank ZY016 大同里外黄 ZY029 鄂马铃薯16号 ZY042 高原7号 ZY055 丽薯15号
ZY004 中加1号 ZY017 YS177 ZY030 YS179 ZY043 Favorita ZY056 YS189
ZY005 内农薯2号 ZY018 后旗红 ZY031 晋薯26号 ZY044 希森6号 ZY057 YS195
ZY006 YS152 ZY019 鄂马铃薯14号 ZY032 青薯9号 ZY045 中薯早35 ZY058 早大白
ZY007 冀张薯8号 ZY020 民丰红 ZY033 YS178 ZY046 希森8号 ZY059 尤金
ZY008 YS098 ZY021 冀张薯15号 ZY034 同薯20号 ZY047 陇薯9号 ZY060 内农薯1号
ZY009 同薯28号 ZY022 华渝8号 ZY035 中薯3号 ZY048 京张薯1号 ZY061 冀张薯14号
ZY010 康尼贝克 ZY023 云薯304 ZY036 北方001 ZY049 兴佳2号 ZY062 克新27号
ZY011 华渝5号 ZY024 郑薯5号 ZY037 LK99 ZY050 龙薯7号 ZY063 克新25号
ZY012 Mira ZY025 中薯5号 ZY038 甘农薯7号 ZY051 北方002
ZY013 YSZ-3 ZY026 冀张薯12号 ZY039 中加2号 ZY052 京张薯3号

表2

SSR引物序列

引物名称Primer name 正向引物Forward primer(5’-3) 反向引物Reversed primer(5’-3’)
C3 CCGGGAGAATTAGACGATGA TTTATGGGGAGCAGTTGAGG
C32 CCCCTTACCCCTCTTCAATC AACCCGTGTCAACTTCTGCT
C55 ACTGCTGTGGTTGGCGTC ACGGCATAGATTTGGAAGCATC
C57 GACTGGCTGACCCTGAACTC GACAAAATTACAGGAACTGCAAA
C59 TCATCACAACGTGACCCCA GGGCTTGAATGATGTGAAGCTC
C61 CGCAAATCTTCATCCGATTC TCCGGCGGATAATACTTGTT
S25 GCGAATGACAGGACAAGAGG TGCCACTGCTACCATAACCA
S007 GACTGGCTGACCCTGAACTC GACAAAATTACAGGAACTGCAAA
S118 AGAGATCGATGTAAAACACGT GTGGCATTTTGATGGATT
S122 GACACGTTCACCATAAAA AGAAGAATAGCAAAGCAA
S148 CAGCAAAATCAGAACCCGAT GGATCATCAAATTCACCGCT
S151 GCTGCTAAACACTCAAGCAGAA CAACTACAAGATTCCATCCACAG
S153 TATGTTCCACGCCATTTCAG ACGGAAACTCATCGTGCATT
S168 CTGCCGCAAAAAGTGAAAAC TGAATGTAGGCCAAATTTTGAA
S170 CGCAAATCTTCATCCGATTC TCCGGCGGATAATACTTGTT
S174 TGAGGGTTTTCAGAAAGGGA CATCCTTGCAACAACCTCCT
S184 TCATCACAACGTGACCCCA GGGCTTGAATGATGTGAAGCTC
S189 CCTTGTAGTACAGCAGTGGTC TCCGCCAAGACTGATGCA
S192 AATTCATGTTTGCGGTACGTC ATGCAGAAAGATGTCAAAATTGA
STI005 CGCAAATCTTCATCCGATTC TCCGGCGGATAATACTTGTT
STI027 ACTGCTGTGGTTGGCGTC ACGGCATAGATTTGGAAGCATC
STI049 TCATCACAACGTGACCCC CGGGCTTGAATGATGTGAAGCT
STACC ACAGGAATCACACCTGCACA TTCAACATCCGCCTGTCATA
STGBSS AATCGGTGATAAATGTGAATGC ATGCTTGCCATGTGATGTGT
STL001 CAGCAAATCAGAACCCGAT GGATCATCAAATTCACCGCT
STL002 ACAGGAATCACACCTGCACA TTCAACATCCGCCTGTGATA
STM0030 AGAGATCGATGTAAAACACGT GTGGCATTTTGATGGATT
STM1031 GTGGTTTGTTTTTCTGTAT AATTCTATCCTCATCTCTA
STM1058 ACAATTTAATTCAAGAAGCTAGG CCAAATTTGTATACTTCAATCTGA
STM1064 GTTCTTTTGGTGGTTTTCCT TTATTTCTCTGTTGTTGCTG
STM1104 TGATTCTCTTGCCTACTGTAATCG GAAAGTGGTGTGAAGCTGTGA
STM2030 TCTTCCCAAATCTAGAATACATGC AAAGTTAGCATGGACAGCATTTC

表3

SSR-PCR反应体系

编号
Number
体系组分
System component
浓度
Concentration
用量
Dosage (μL)
1 ddH2O 14.1
2 10×Buffer (Mg2+) 50 μmol/L 2.0
3 dNTPs 2.5 mmol/L 1.6
4 Taq DNA聚合酶 5 U/μL 0.1
5 正向引物 50 μmol/L 0.6
6 反向引物 50 μmol/L 0.6
7 DNA模板 50 ng/μL 1.0
8 总体积 20.0

图1

63份马铃薯材料基因组DNA纯度检测 M:DNA分子量标准DL2000,1~63表示ZY001~ZY063品种,下同。

图2

引物S118对63份马铃薯品种(系)的扩增结果

表4

基于32对SSR引物的马铃薯材料遗传多样性分析

引物
Primer
退火温度
Tm (℃)
多态性条带数
NBP
总条带数
Total bands
多态条带比率
PPB (%)
有效等位基因
Ne
Nei’s遗传多样性指数
H
Shannon指数
I
多态信息含量
PIC
C3 56 3 4 75.00 1.6965 0.3607 0.5054 0.8108
C32 55 2 2 100.00 1.8985 0.4718 0.6645 0.6712
C55 55 3 3 100.00 1.7493 0.4229 0.6128 0.7951
C57 54 2 2 100.00 1.8438 0.4573 0.6498 0.5318
C59 53 3 4 75.00 1.5632 0.3200 0.4631 0.7484
C61 57 4 5 80.00 1.6947 0.3715 0.5256 0.8381
S25 55 7 9 77.78 1.7241 0.3744 0.5245 0.9198
S7 60 2 2 100.00 1.8331 0.4500 0.6413 0.6683
S118 58 8 10 80.00 1.5121 0.3275 0.4668 0.9248
S122 50 3 3 100.00 1.5146 0.3379 0.5202 0.6927
S148 53 3 4 75.00 1.5926 0.3307 0.4745 0.8231
S151 56 3 3 100.00 1.5545 0.3494 0.5310 0.7959
S153 53 7 8 87.50 1.8486 0.4306 0.5996 0.9085
S168 53 2 2 100.00 1.8504 0.4579 0.6501 0.4778
S170 53 7 8 87.50 1.7930 0.4144 0.5828 0.9142
S174 52 3 3 100.00 1.8569 0.4585 0.6503 0.7954
S184 53 4 5 80.00 1.7028 0.3730 0.5269 0.8500
S189 53 4 4 100.00 1.8574 0.4733 0.6661 0.8483
S192 54 6 7 85.71 1.6462 0.3635 0.5261 0.9084
STI005 56 6 7 85.71 1.7180 0.3878 0.5521 0.9033
STI027 55 5 6 83.33 1.5798 0.3330 0.4883 0.8766
STI049 53 3 3 100.00 1.9212 0.4790 0.6719 0.7895
STACC 55 4 4 100.00 1.4989 0.3322 0.5141 0.8521
STGBSS 54 3 3 100.00 1.4977 0.3304 0.5117 0.7962
STL001 56 6 7 85.71 1.6921 0.3778 0.5410 0.8971
STL002 55 3 4 75.00 1.6706 0.3527 0.4971 0.7754
STM0030 52 11 12 91.67 1.7709 0.4142 0.5893 0.9367
STM1031 50 5 5 100.00 1.7607 0.4217 0.6097 0.8660
STM1058 51 4 4 100.00 1.9674 0.4914 0.6845 0.8102
STM1064 56 6 7 85.71 1.6896 0.3702 0.5304 0.8880
STM1104 57 5 5 100.00 1.5269 0.3082 0.4562 0.8210
STM2030 55 8 9 88.89 1.8170 0.4234 0.5945 0.9262

表5

63份马铃薯品种(系)遗传距离

遗传距离区间
Genetic distance
interval
平均遗传距离
Mean genetic
distance
品种间最大遗传距离相似系数
Similarity coefficient of maximum
genetic distance between varieties
品种间最小遗传距离相似系数
Similarity coefficient of minimum
genetic distance between varieties
0.12~0.71 0.297 0.500 0.810

图3

63份马铃薯种质资源聚类图

图4

63份马铃薯种质资源遗传多样性的主成分分析

表6

63份马铃薯品种(系)的SSR指纹图谱

编号
Number
品种(系)
Variety (line)
指纹Fingerprint 编号
Number
品种(系)
Variety (line)
指纹Fingerprint
STL001 S192 S118 STL001 S192 S118
ZY001 YSZ-1 1010001 0000001 1101111111 ZY009 同薯28号 1011111 0111011 1111111111
ZY002 YSZ-2 1110001 1111111 1101100111 ZY010 康尼贝克 1111011 0111011 1110111111
ZY003 Russet Burbank 1011001 1011101 1111111111 ZY011 华渝5号 1111001 1111101 1001100111
ZY004 中加1号 1111001 0000001 1110111111 ZY012 Mira 1111001 1000111 1111111111
ZY005 内农薯2号 1011001 0110011 1111111101 ZY013 YSZ-3 1010011 0110001 1100100111
ZY006 YS152 1011111 0000111 0111111111 ZY014 YS165 1001011 0000101 1101100111
ZY007 冀张薯8号 1110001 1110111 1101100011 ZY015 Agria 0111001 0011001 1111111111
ZY008 YS098 1110001 0010111 1101101001 ZY016 大同里外黄 1110011 1011101 1111111111
ZY017 YS177 1111011 0010111 1111111111 ZY041 陇薯7号 1111101 0101111 1101100101
ZY018 后旗红 1111001 1110111 1101111111 ZY042 高原7号 1011101 0100111 1111111111
ZY019 鄂马铃薯14号 1110001 1010111 1101111111 ZY043 Favorita 1111111 0100111 1111111111
ZY020 民丰红 1000001 0000001 1111111111 ZY044 希森6号 1111111 0110111 1110111011
ZY021 冀张薯15号 1110111 0110111 1101100011 ZY045 中薯早35 1111111 1110111 1101100011
ZY022 华渝8号 1111011 0000101 1111111111 ZY046 希森8号 1011111 1100111 1110111011
ZY023 云薯304 0000001 0111011 1111111001 ZY047 陇薯9号 0101101 0100011 1101100011
ZY024 郑薯5号 1111111 0111011 1111111001 ZY048 京张薯1号 1111101 1100111 1101100011
ZY025 中薯5号 1111001 1000111 1111111011 ZY049 兴佳2号 1011111 0111101 0000111001
ZY026 冀张薯12号 1111001 0011111 1101100111 ZY050 龙薯7号 1100101 0111111 1111110001
ZY027 晋薯16号 1110001 1010001 1111111111 ZY051 北方002 1111011 0110111 1111100001
ZY028 同薯24号 1111111 1011011 1101111111 ZY052 京张薯3号 1111101 1111111 0000100001
ZY029 鄂马铃薯16号 1111011 1000111 1111111111 ZY053 东农310 1111101 0111011 1110110001
ZY030 YS179 0000001 0000011 1100111111 ZY054 Jardinor 1011111 0000001 1101101111
ZY031 晋薯26号 0001111 1011111 1110111101 ZY055 丽薯15号 1111001 1111011 1101100011
ZY032 青薯9号 1111101 1000001 1101110101 ZY056 YS189 1101101 0010001 1111100001
ZY033 YS178 0000001 0000111 1101100111 ZY057 YS195 0111011 0000001 1111101111
ZY034 同薯20号 1110001 1100011 1111111111 ZY058 早大白 1011111 1111111 1101111111
ZY035 中薯3号 1111111 1111011 1110111011 ZY059 尤金 1011101 0110111 1100110011
ZY036 北方001 0100001 0110111 1101100111 ZY060 内农薯1号 1101001 0000001 1111111101
ZY037 LK99 1010001 1011001 0000100001 ZY061 冀张薯14号 1111001 1111111 1101100001
ZY038 甘农薯7号 1011111 1000011 1001100001 ZY062 克新27号 1110001 1110111 1101101101
ZY039 中加2号 1110001 0111011 1111111111 ZY063 克新25号 1011101 0000011 1111111111
ZY040 青薯168 1111111 0111011 1101100101

图5

63份马铃薯品种(系)的QR编码图

[1] 刘思泱, 于卓, 蒙美莲, 等. 6个彩色马铃薯品种的ISSR分析. 华北农学报, 2010, 25(5):117-120.
doi: 10.7668/hbnxb.2010.05.024
[2] 李文刚, 曹春梅, 刘富强, 等. 国际马铃薯种业现状及发展综述Ⅰ——国际马铃薯种业发展趋势分析. 哈尔滨: 哈尔滨工程大学出版社, 2014.
[3] 杨帅, 闵凡祥, 高云飞. 新世纪中国马铃薯产业发展现状及存在问题. 中国马铃薯, 2014, 28(5):311-316.
[4] 徐建飞, 金黎平. 马铃薯遗传育种研究:现状与展望. 中国农业科学, 2017, 50(6):990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003
[5] 杨学勇, 苏汉东, 张梦卓, 等. 多倍化和驯化研究进展与展望. 中国科学: 生命科学, 2021, 51(10):1457-1466.
[6] 李瑞峰. 甜瓜主栽品种指纹图谱库的构建及遗传多样性分析. 哈尔滨: 东北农业大学, 2014.
[7] 白瑞霞, 彭建营. DNA分子标记在果树遗传育种研究中的应用. 西北植物学报, 2004, 24(8):1547-1554.
[8] 李毳, 李继萍, 柴宝峰. 微卫星标记的发展及植物研究中的应用. 郑州航空工业管理学院学报(社会科学版), 2004, 23(6):199-200.
[9] 李建武, 李灏德, 文国宏, 等. 甘肃省主栽马铃薯品种遗传多样性的AFLP与SSR分子标记分析. 甘肃农业科技, 2016(7):1-6.
[10] 余斌, 杨宏羽, 王丽. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018, 44(1):63-74.
[11] 张海雯, 巩檑, 马斯霜. 基于SSR标记的马铃薯种质遗传多样性及群体结构分析. 分子植物育种, 2020, 18(12):4144-4152.
[12] 王鹏, 李芳弟, 郭天顺, 等. 马铃薯种质资源遗传关系分析及指纹图谱构建. 农业生物技术学报, 2020, 28(5):794-810.
[13] 段绍光, 金黎平, 李广存, 等. 马铃薯品种遗传多样性分析. 作物学报, 2017, 43(5):718-729.
[14] Song X Y, Zhang C Z, Li Y, et al. SSR analysis of genetic diversity among 192 diploid potato cultivars. Horticultural Plant Journal, 2016, 2(3):163-171.
[15] Sapinder B, Girijesh P, Rich N, et al. Evaluation of genetic diversity among Russet potato clones and varieties from breeding programs across the United States. PLoS ONE, 2018, 13(8):e0201415.
[16] Karaagac E, Yilma S, Cuesta-Marcos A, et al. Molecular analysis of potatoes from the pacific northwest tri-state variety development program and selection of markers for practical DNA fingerprinting applications. American Journal of Potato Research, 2014, 91(2):195-203.
[17] Pandey J, Scheuring D C, Koym J W, et al. Genetic diversity and population structure of advanced clones selected over forty years by a potato breeding program in the USA. Scientific Reports, 2021, 11(1):8344.
doi: 10.1038/s41598-021-87284-x pmid: 33863959
[18] Esnault F, Pelle R, Dantec J P, et al. Development of a potato cultivar core collection, a valuable tool to prospect genetic variation for novel traits. Potato Research, 2016, 59(4):329-343.
[19] Anoumaa M, Yao K N, Kouam B E, et al. Genetic diversity and core collection for potato cultivars from cameroon as revealed by SSR markers. American Journal of Potato Research, 2017, 94(4):449-463.
[20] McGregor C E, Van T R, Hoekstra R, et al. Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theoretical and Applied Genetics, 2002, 104(1):146-156.
pmid: 12579440
[21] Moisan-Thiery M, Marhadour S, Kerlan C M, et al. Potato cultivar identification using simple sequence repeats markers (SSR). Potato Research, 2005, 48:191-200.
[22] Galarreta D R I J, Barandalla L, Rios J D, et al. Genetic relationships among local potato cultivars from Spain using SSR markers. Genetic Resources and Crop Evolution, 2011, 58:383-395.
[23] Wang P S, Liu W S, Li Y, et al. Multiplex PCR system optimization with potato SSR markers. Journal of Northeast Agricultural University, 2012, 19(3):20-27.
[24] 贺丹, 唐婉, 刘阳. 尾叶紫薇与紫薇F1代群体主要表型性状与SSR标记的连锁分析. 北京林业大学学报, 2012, 34(6):121-125.
[25] Lee N O, Park Y H. Assessment of genetic diversity incultivated radishes (Raphanus sativus) by agronomic traits and SSR markers. Scientia Horticulturae, 2017, 223:19-30.
[26] Rutuja S P, Krishnan S. Genetic diversity between and within the natural populations of Garcinia indica (Thouars) Choisy: a high value medicinal plant from Northern Western Ghats of India using ISSR markers. Journal of Applied Research on Medicinal and Aromatic Plants, 2019, 15:100219.
[27] Carneiro L M V, Santini L, Diniz A L, et al. Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, 2016, 39(3):312-328.
doi: 10.1590/1678-4685-GMB-2016-0027 pmid: 27561112
[28] 陈小红, 林元香, 王倩, 等. 基于高基元SSR构建黍稷种质资源的分子身份证. 作物学报, 2022, 48(4):908-919.
doi: 10.3724/SP.J.1006.2022.14034
[29] Singh N, Choudhury R D, Singh K A, et al. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS ONE, 2013, 8(12):e84136.
[30] Carvalho M C, Oliveira C M O P, Silva, M S, et al. Genetic diversity and structure of landrace accessions, elite lineages and cultivars of common bean estimated with SSR and SNP markers. Molecular Biology Reports, 2020, 47(9):1-11.
[31] Filippi C V, Aguirre N, Rivas J G, et al. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biology, 2015, 15(1):52.
[32] Würschum T, Langer S M, Longin C F, et al. Population structure,genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126(6):1477-1486.
doi: 10.1007/s00122-013-2065-1 pmid: 23429904
[33] Wu F F, Zhang S X, Gao Q, et al. Genetic diversity and population structure analysis in a large collection of Vicia amoena in China with newly developed SSR markers. BMC Plant Biology, 2021, 21(1):544.
[34] Gil J, Um Y, Kim S, et al. Development of genome-wide SSR markers from Angelica gigas Nakai using next generation sequencing. Genes, 2017, 8(10):238.
[35] Lee H Y, Moon S, Shim D, et al. Development of 44 novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes, 2017, 8(4):109.
[36] Balbino E, Martins G, Morais S, et al. Genome survey and development of 18 microsatellite markers to assess genetic diversity in Spondias tuberosa Arruda Câmara (Anacardiaceae) and cross-amplification in congeneric species. Molecular Biology Reports, 2019, 46(3):3511-3517.
doi: 10.1007/s11033-019-04768-w pmid: 30915689
[37] Jayabalan S, Pulipati S, Ramasamy K, et al. Analysis of genetic diversity and population structure using SSR markers and validation of a Cleavage Amplified Polymorphic Sequences (CAPS) marker involving the sodium transporter OsHKT1;5 in saline tolerant rice (Oryza sativa L. ) landraces. Gene, 2019, 713:143976.
[38] Emanuelli F, Lorenzi S, Grzeskowiak L, et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 2013, 13:39.
[39] Chen L, Pan T T, Qian H R, et al. Genetic diversity and population structure revealed by SSR markers on endemic species osmanthusserrulatus rehder from southwestern Sichuan basin, China. Forests, 2022, 12(10):1365.
[40] Sayed M R I, Alshallash K S, Safhi F A, et al. Genetic diversity, analysis of some agro-morphological and quality traits and utilization of plant resources of Alfalfa. Genes, 2022, 13(9):1521.
[41] 潘哲超, 王颖, 徐宁生, 等. 马铃薯重要农艺性状的相关性、主成分与聚类分析. 分子植物育种, 2020, 18(5):1626-1636.
[42] 张招娟, 邓跃, 黄泷健, 等. 福建省马铃薯主栽品种SSR遗传多样性分析. 分子植物育种, 2019, 17(22):7420-7427.
[43] 宋峥, 王崇, 徐颖华, 等. 马铃薯地方种质资源的SSR遗传多样性分析. 分子植物育种, 2020, 20(21):7143-7153.
[44] El-Esawi M A, Germaine K, Bourke P, et al. AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland. Comptes Rendus Biologies, 2016, 339(5/6):163-170.
[45] 吴立萍, 吕典秋, 姜丽丽, 等. 俄罗斯马铃薯种质资源遗传多样性的SSR分析. 分子植物育种, 2017, 15(10):4047-4053.
[46] 毛向红, 范向斌, 白小东, 等. 基于SSR分子标记的晋北地区引进马铃薯种质资源遗传多样性分析. 作物杂志, 2024(5):54-59.
[47] 安苗, 王彤彤, 付逸婷, 等. 52个马铃薯遗传多样性分析及SSR分子身份证构建. 生物技术通报, 2023, 39(12):136-147.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0512
[48] 张云帅. 24个马铃薯品种的遗传多样性分析及指纹图谱的构建. 张家口: 河北北方学院, 2022.
[1] 高树广, 徐东阳, 胡敏杰, 王瑞霞, 张春花, 徐博涵, 李伟峰, 张留平. 芝麻种质资源品质性状的初步鉴定与评价[J]. 作物杂志, 2025, (4): 58–64
[2] 孙邦升, 宋继玲, 杨梦平, 邢金月, 胡尊艳, 郝智勇, 李菁华, 刘春生. 高淀粉马铃薯初级核心种质资源的遗传多样性分析[J]. 作物杂志, 2025, (3): 52–60
[3] 赵雅杰, 温蕊, 贾祎明, 金晓蕾, 张永虎, 张利俊, 张彪, 张慧, 于立霞. 谷子种质资源表型性状遗传多样性分析[J]. 作物杂志, 2025, (3): 61–69
[4] 常宏兵, 王晨, 何美敬, 曹熙敏, 俞凤芳, 曹晓良, 宋炜, 吕爱枝. 基于SSR标记对69份玉米种质资源的遗传多样性分析[J]. 作物杂志, 2025, (2): 47–53
[5] 江慧, 钟巧芳, 殷富有, 李金璐, 刘丽, 张云, 王波, 蒋聪, 程在全, 张慧, 肖素勤. 药用野生稻种质资源和多组学研究进展[J]. 作物杂志, 2025, (2): 1–8
[6] 卢晶, 余波, 江谧, 彭镰心, 任远航, 吴琪. 58份青稞种质资源遗传多样性评价[J]. 作物杂志, 2025, (2): 20–28
[7] 毛彦芝, 孙贺光, 李庆全, 郭梅, 王文重, 魏琪, 董学志, 闵凡祥, 孙晶, 宋晓宇. 我国马铃薯晚疫病监测预警研究进展[J]. 作物杂志, 2025, (1): 10–14
[8] 张楷楷, 赵德明, 马菊花, 白鹏军, 马鹏, 陈蕙, 徐文杰, 黄彩霞, 刘众宇. 垄沟秸秆覆盖对旱作马铃薯土壤水热特征及产量的影响[J]. 作物杂志, 2025, (1): 139–146
[9] 马鹏, 魏熙明, 丁芳菊, 张楷楷, 王巧丽, 邢古月, 常磊, 黄彩霞. 水氮调控对膜下滴灌马铃薯水分动态及产量的影响[J]. 作物杂志, 2025, (1): 170–178
[10] 颜群翔, 庞玉辉, 洪壮壮, 毕俊鸽, 王春平. 141份国内外小麦种质资源主要性状遗传多样性分析与特异性评价[J]. 作物杂志, 2025, (1): 26–34
[11] 姚陆铭, 袁娟, 马晓红, 王彪. 基于表型性状及SSR标记的扁豆种质资源遗传多样性分析[J]. 作物杂志, 2025, (1): 35–45
[12] 张杰, 贾冰, 程瑞宝, 杨薇, 刘影, 张立媛, 温雅辉, 董春浩, 王振普, 琦明玉, 张清艳, 赵敏, 李志光. 东北平原生态区糜子种质资源表型多样性分析[J]. 作物杂志, 2025, (1): 76–82
[13] 庞敏昡, 王瀚, 李志涛, 史宁帆, 蒲转芳, 张锋, 姚攀锋, 毕真真, 白江平, 孙超. 不同水分处理下施用立收谷对马铃薯品质的影响[J]. 作物杂志, 2024, (6): 132–139
[14] 阳新月, 向颖, 陈子恒, 林茜, 邓振鹏, 周克友, 李明聪, 王季春. 有机质施用量对马铃薯产量及氮、磷、钾养分吸收利用的影响[J]. 作物杂志, 2024, (6): 153–161
[15] 金彦君, 祝洪沙, 李成东, 王金禹, 张忠福, 万婷丽, 周爱爱, 撒刚, 程李香, 刘娟, 余斌. 外源激素对雾培马铃薯叶片气孔密度及块茎产量的调控[J]. 作物杂志, 2024, (6): 205–211
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!