作物杂志,2024, 第6期: 205211 doi: 10.16035/j.issn.1001-7283.2024.06.027
金彦君1(), 祝洪沙1, 李成东1, 王金禹1, 张忠福5, 万婷丽3, 周爱爱3, 撒刚2, 程李香2, 刘娟4, 余斌2()
Jin Yanjun1(), Zhu Hongsha1, Li Chengdong1, Wang Jinyu1, Zhang Zhongfu5, Wan Tingli3, Zhou Aiai3, Sa Gang2, Cheng Lixiang2, Liu Juan4, Yu Bin2()
摘要:
为探究雾培条件下外源激素对马铃薯叶片气孔密度和块茎产量的影响,以费乌瑞它和甘农薯7号为试验材料,设置叶面喷施10 mg/L 6-苄氨基嘌呤(6-BA)、0.1 mmol/L茉莉酸甲酯(MeJA)和0.1 mg/L油菜素内酯(BR)处理。结果表明,3种激素处理均可不同程度增加马铃薯叶片气孔密度,其中喷施10 mg/L 6-BA,费乌瑞它叶片近轴面和远轴面气孔密度较对照分别增加13.89%、6.74%,甘农薯7号分别增加了12.02%、3.38%;喷施0.1 mmol/L MeJA,费乌瑞它叶片近轴面和远轴面气孔密度分别较对照增加26.98%、29.43%,甘农薯7号分别增加12.75%、15.25%;喷施0.1 mg/L BR,费乌瑞它叶片近轴面和远轴面气孔密度分别较对照增加11.78%、10.70%,甘农薯7号分别增加28.84%、39.15%。喷施10 mg/L 6-BA使费乌瑞它与甘农薯7号单株结薯数较对照分别增加10.00%、23.67%,单株产量较对照分别增加23.24%、28.31%%;喷施0.1 mmol/L MeJA,费乌瑞它的单株产量较对照极显著增加17.66%,甘农薯7号的单株结薯数较对照显著增加19.86%;喷施0.1 mg/L BR,费乌瑞它、甘农薯7号的单株结薯数较对照分别增加19.84%、47.89%。研究结果表明,雾培条件下叶面喷施10 mg/L 6-BA、0.1 mmol/L MeJA、0.1 mg/L BR可增加马铃薯气孔密度,并通过增加单株结薯数提高块茎产量,且近轴面与远轴面的气孔密度均与单株结薯数呈极显著正相关。
[1] | 张德银, 廖霏霏, 刘兴贵, 等. 脱毒马铃薯雾化生产研究进展. 现代农业科技, 2018(20):60-61,63. |
[2] | 李岩, 徐珊珊, 王根轩. 气孔发育机制及其内外调控因子的研究进展. 生命科学, 2018, 30(5):491-499. |
[3] |
Wei H B, Jing Y F, Zhang L, et al. Phytohormones and their crosstalk in regulating stomatal development and patterning. Journal of Experimental Botany, 2021, 72(7):2356-2370.
doi: 10.1093/jxb/erab034 pmid: 33512461 |
[4] | Geisler M, Sack N F D. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. The Plant Cell, 2000, 12 (11):2075-2086. |
[5] |
Nadeau J A,sack F D. Stomatal development: cross talk puts mouths in place. Trends in Plant Science, 2003, 8(6):294-299.
pmid: 12818664 |
[6] |
Serna L, Fenoll C. Stomatal development in Arabidopsis: how to make a functional pattern. Trends in Plant Science, 2000, 5(11):458-460.
pmid: 11077245 |
[7] |
Anne V, Soyars C L, Tarr P T, et al. Modulation of asymmetric division diversity through cytokinin and SPEECHLESS regulatory interactions in the Arabidopsis stomatal lineage. Developmental Cell, 2018, 47(1):53-66.
doi: 10.1016/j.devcel.2018.08.007 |
[8] | Han X, Hu Y R, Zhang G S, et al. Jasmonate negatively regulates stomatal development in Arabidopsis cotyledons. Plant Physiology, 2018, 176(4):2871-2885. |
[9] | 张根松. 茉莉素促进气孔发育的分子机制. 昆明:云南大学, 2019. |
[10] | Kim T W, Michniewicz M, Bergmann D C, et al. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 2012, 482(7385):419-422. |
[11] | Khan M, Rozhon W, Bigeard J, et al. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. Journal of Biological Chemistry, 2013, 288 (11):7519-7527. |
[12] |
Gudesblat G E, Schneider-pizoń J, Betti C, et al. SPEECHLESS integrates brassinosteroid and stomata signaling pathways. Nature Cell Biology, 2012, 14(5):548-554.
doi: 10.1038/ncb2471 pmid: 22466366 |
[13] |
Martin B, Aashish R, Laura R, et al. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins. Development, 2014, 141(16):3165-3176.
doi: 10.1242/dev.109181 pmid: 25063454 |
[14] | Diego G, Sonia F, Laura S. Interactions among gibberellins, brassinosteroids and genes regulate stomatal development in the Arabidopsis hypocotyl. International Journal of Developmental Biology, 2017, 61(6/7):383-387. |
[15] |
Arve L E, Sissel T. Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves. Functional Plant Biology, 2015, 42(4):376-386.
doi: 10.1071/FP14247 pmid: 32480682 |
[16] |
Bresta P, Nikolopoulos D, Stavroulaki V, et al. How does long- term drought acclimation modify structure-function relationships? A quantitative approach to leaf phenotypic plasticity of barley. Functional Plant Biology, 2018, 45(12):1181-1194.
doi: 10.1071/FP17283 pmid: 32291009 |
[17] | Liang X D, Jaume F. From one-side to two-sides: the effects of stomatal distribution on photosynthesis. New Phytologist, 2020, 228(6):1756-1766. |
[18] | Hasanuzzaman M, Zhou M X, Serge Y S. How does stomatal density and residual transpiration contribute to osmotic stress tolerance. Plants, 2023, 12(3):494. |
[19] | 刘耀权, 张晓洋, 白斌. 不同生态型小麦品种叶片气孔密度及形态差异分析. 西北农业学报, 2023, 32(5):677-684. |
[20] |
Haworth M, Marino G, Loreto F, et al. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops. Oecologia, 2021, 197(4):867-883.
doi: 10.1007/s00442-021-04857-3 pmid: 33515295 |
[21] | 杨天乐, 吴峰峰, 刘涛, 等. 作物气孔的作用及其影响因素的研究进展. 北方园艺, 2020, 44(3):143-148. |
[22] | Wang H, Li N, Li H, et al. Overexpression of NtGCN2 improves drought tolerance in tobacco by regulating proline accumulation, ROS scavenging ability, and stomatal closure. Plant Physiology and Biochemistry, 2023, 198:107665. |
[23] | Wang M, Yang K Z, Le J. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of TOO MANY MOUTHS. Journal of Integrative Plant Biology, 2015, 57(3):247-255. |
[24] | Peng M L, Wang X Y, Li L Q. The effect of plant growth regulator and active charcoal on the development of microtubers of potatoes. American Journal of Plant Sciences, 2012, 3(11):1535-1540. |
[25] | Li C, Wang P, Menzies N W, et al. Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, 2018, 181(3):409-418. |
[26] | Uromova I P, Shtyrlina O V, Koposova N N, et al. Brassinosteroids in breeding technologies healthcare potato. American Journal of Agricultural and Biological Sciences, 2014, 9(3):445-449. |
[1] | 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 18 |
[2] | 程生煜, 杨彩红, 崔文强, 姜晓敏. 不同耕种模式对玉米叶片生理及结构的影响[J]. 作物杂志, 2024, (6): 103112 |
[3] | 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126131 |
[4] | 庞敏昡, 王瀚, 李志涛, 史宁帆, 蒲转芳, 张锋, 姚攀锋, 毕真真, 白江平, 孙超. 不同水分处理下施用立收谷对马铃薯品质的影响[J]. 作物杂志, 2024, (6): 132139 |
[5] | 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147152 |
[6] | 阳新月, 向颖, 陈子恒, 林茜, 邓振鹏, 周克友, 李明聪, 王季春. 有机质施用量对马铃薯产量及氮、磷、钾养分吸收利用的影响[J]. 作物杂志, 2024, (6): 153161 |
[7] | 张金鑫, 葛均筑, 李从锋, 周宝元. 黄淮海平原夏玉米生长季气候资源分配与利用特征[J]. 作物杂志, 2024, (6): 162170 |
[8] | 赵希梅, 李琪, 严如玉, 向风云, 李雅琼, 李绪勋, 邹家龙, 李继福. 无人机飞播时期及播种方式对冬油菜产量、品质和经济效益的影响[J]. 作物杂志, 2024, (6): 179185 |
[9] | 李宗泽, 陆占军, 史云云, 杜伟, 蒋旭东, 杨明进, 杨俊丽, 黄秀琴, 杨飞. 宁夏马铃薯脱毒种薯主要病毒病调查[J]. 作物杂志, 2024, (6): 232236 |
[10] | 于沐, 杨海棠, 胡延岭, 刘软枝, 石彦召, 李盼, 韩艳红, 朱桢桢, 李世忠, 郭振超. 花生产量组成的基因型与环境互作及稳定性分析[J]. 作物杂志, 2024, (6): 5560 |
[11] | 杨铁鑫, 董立强, 马亮, 冯莹莹, 李志强. 辽宁中部平原稻区香型粳稻品种产量及品质评价[J]. 作物杂志, 2024, (6): 7177 |
[12] | 郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文. 铁肥施用对绿豆产量和籽粒含铁量的影响[J]. 作物杂志, 2024, (5): 105109 |
[13] | 孙光旭, 刘莹, 王欣怡, 孔德庸, 韦娜, 邢力文, 郭伟. 群体密度和黄腐酸对芸豆产量及籽粒营养品质的影响[J]. 作物杂志, 2024, (5): 110118 |
[14] | 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119124 |
[15] | 黄渝岚, 刘文君, 李艳英, 周佳, 周灵芝, 劳承英, 李素平, 申章佑, 韦本辉. 木薯田间作不同密度南瓜对作物产量、经济效益及土地生产力的影响[J]. 作物杂志, 2024, (5): 125130 |
|