作物杂志,2016, 第6期: 9–15 doi: 10.16035/j.issn.1001-7283.2016.06.002

• 专题综述 • 上一篇    下一篇

Phytocystatin在植物抗病虫中的作用及表达调控

余永廷,高春生,李智敏,曾粮斌,陈佳,朱爱国,朱涛涛,孙凯,严准   

  1. 中国农业科学院麻类研究所,410205,湖南长沙
  • 收稿日期:2016-08-19 修回日期:2016-11-01 出版日期:2016-12-15 发布日期:2018-08-26
  • 作者简介:余永廷,副研究员,主要从事麻类作物抗病性遗传学和植物—病原物互作分子生物学研究
  • 基金资助:
    中国农业科学院科技创新工程“南方经济作物有害生物防控(ASTIP-IBFC09)”;农业部部门预算项目“经济作物病虫害发生规律及农药使用情况调查(S158)”

Role and Expression Regulation of Phytocystatin in Plant Resistance to Diseases and Pests

Yu Yongting,Gao Chunsheng,Li Zhimin,Zeng Liangbin,Chen Jia,Zhu Aiguo,Zhu Taotao,Sun Kai,Yan Zhun   

  1. Institute of Bast Fiber Crops,Chinese Academy of Agricultural Sciences,Changsha 410205,Hunan,China
  • Received:2016-08-19 Revised:2016-11-01 Online:2016-12-15 Published:2018-08-26

摘要:

植物半胱氨酸蛋白酶抑制剂(phytocystatin)在抗线虫、草食动物及真菌等生物胁迫中发挥重要作用。在植物受到线虫或草食动物危害时,phytocystatin能直接抑制其体内一种重要的消化酶——半胱氨酸蛋白酶的活性,从而影响这些害虫的生长和繁殖。然而,phytocystatin抑制植物病原真菌的生长却不依赖于其蛋白酶抑制活性,其抑菌潜在机制目前并不清楚。在植物受到生物胁迫时,phytocystain的表达受多种因子调控,与茉莉酸信号密切相关,但其表达调控的详细网络特征需要更多的研究来阐明。本文总结了phytocystatin在植物抗线虫、草食动物及真菌中的研究及应用,分析了其表达调控机制,并对其未来研究趋势及应用前景进行了展望。

关键词: 半胱氨酸蛋白酶抑制剂, 抑菌机理, 表达调控, 植物, 抗病, 抗虫

Abstract:

Plant cysteine proteinase inhibitor, also called phytocystatin, plays a critical role in plant resistance to bioticstress, such as nematode, herbivore and fungi, etc. It can impair their growth and reproduction by directly inhibiting the activity of cysteine proteinase, an important digestive enzyme of nematode or herbivore when they infect plant. However, the impairing function of phytocystatin to some phytopathogenic fungi does not depend on its cysteine proteinase inhibiting activity and its underlying mechanism is still unclear. When plant suffered to biotic stress, expression of phytocystatin is regulated by various genes and is closely related to JA signaling. However, regulation network of phytocystatin expression is unclear and need more studies to reveal. This review summarizes the recent studies highlighting the role and application of phytocystatin in plant resistance to nematode and herbivore, and analyzes the expression regulation mechanism of phytocystatin. In addition, we forecast the research tendency and application prospect of this protein.

Key words: Phytocystatin, Antifungal mechanism, Expression regulation, Disease-resistant, Pest-resistant

图1

植物PhytoCys保守序列及其在肽链上的分布"

表1

一些植物PhytoCys及其抗真菌谱"

植物Species 蛋白名称Protein name 测试病原真菌Pathogen tested 参考文献Reference
板栗Chestnut CSC 禾生炭疽菌(Colletotrichum graminicola) [21]
灰葡萄孢(Botrytis cinerea)
颖枯壳针孢(Septoria nodorum)
甘蔗Sugarcane Canecystatin 里氏木霉(Trichoderma reesei) [22]
芋头Taro CeCPI 齐整小核菌(Sclerotium rolfsii) [18]
立枯丝核菌(Rhizoctonia solani)
芸薹链格孢(Alternaria brassicae)
围小丛壳菌(Glomerella cingulata)
瓜果腐霉(Pythium aphanidermatum)
尖孢镰孢(Fusarium oxysporum)
小麦Wheat TaMDC1 雪霉微座孢(Microdochium nivale) [23]
大麦Barley Hv-CPI 灰葡萄孢(Botrytis cinerea) [24]
禾生刺盘孢(Colletotrichum graminicola)
黄瓜织球壳菌(Plectosphaerella cucumerina)
绿色木霉(Trichoderma viride)
HvCPI-2 灰葡萄孢(Botrytis cinerea) [25]
HvCPI-3 尖孢镰刀菌(Fusarium oxysporum)
草莓Strawberry FaCPI-1 灰葡萄孢(Botrytis cinerea) [26]
尖孢镰刀菌(Fusarium oxysporum)
苋菜Amaranth AhCPI 立枯丝核菌(Rhizoctonia solani) [19]
尖孢镰刀菌(Fusarium oxysporum)
白腐小核菌(Sclerotium cepivorum)
猕猴桃Kiwifruit KCPIs 灰葡萄孢(Botrytis cinerea) [27]
根状链格孢(Alternaria radicina)
暹罗郁金香Siam tulip CaCPI 尖孢镰刀菌(Fusarium oxysporum) [28]
灰梨孢(Pyricularia grisea)
辣椒刺盘孢(Colletotrichum capsici)
可可Cacao TcCys1,TcCys2,TcCys3,TcCys4 可可丛枝病菌(Moniliophthora perniciosa) [20]
芝麻Sesame SiCYS 里氏木霉(Trichoderma reesei) [29]
萨氏曲霉(Aspergillus sydowii)
芝麻长蠕孢(Helminthosporium sesamum)
[1] van Loon L C, Rep M, Pieterse C M . Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006,44:135-162.
doi: 10.1146/annurev.phyto.44.070505.143425
[2] Sels J, Mathys J, De Coninck B M ,et al.Plant pathogenesis-related (PR) proteins:a focus on PR peptides. Plant Physiology and Biochemistry, 2008,46:941-950.
doi: 10.1016/j.plaphy.2008.06.011 pmid: 18674922
[3] Heitz T, Geoffroy P, Fritig B . The PR-6 family:proteinase inhibitors in plant-microbe and plant-insect interactions//Datta S K,Muthukrishan S.Pathogenesis-related in Proteins Plants, 1999: 131-155.
[4] Lima A M, dos Reis S P, de Souza C R B . Phytocystatins and their potential to control plant diseases caused by fungi. Protein Peptide Letters, 2015,22:104-111.
doi: 10.2174/0929866521666140418101711
[5] Rivard D, Girard C, Anguenot R , et al. MsCYS1,a developmentally-regulated cystatin from alfalfa. Plant Physiology and Biochemistry, 2007,45:508-514.
doi: 10.1016/j.plaphy.2007.03.028 pmid: 17507234
[6] Belenghi B, Acconcia F, Trovato M , et al. AtCYS1,a cystatin from Arabidopsis thaliana,suppresses hypersensitive cell death. European Journal of Biochemistry, 2003,270:2593-2604.
doi: 10.1046/j.1432-1033.2003.03630.x
[7] Diaz-Mendoza M, Velasco-Arroyo B, Gonzalez-Melendi P , et al. C1A cysteine protease-cystatin interactions in leaf senescence. Journal of Experimental Botany, 2014,65:3825-3833.
doi: 10.1093/jxb/eru043 pmid: 24600023
[8] Kuroda M, Kiyosaki T, Matsumoto I , et al. Molecular cloning,characterization,and expression of wheat cystatins.Bioscience,Biotechnology, and Biochemistry, 2001,65:22-28.
[9] Shyu D J, Chou W M, Yiu T J , et al. Cloning,functional expression,and characterization of cystatin in sesame seed. Journal of Agricultural and Food Chemistry, 2004,52:1350-1356.
doi: 10.1021/jf034989v pmid: 14995145
[10] Martinez M, Cambra I, Carrillo L , et al. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases,partners in the hordein mobilization during seed germination. Plant Physiology, 2009,151:1531-1545.
doi: 10.1104/pp.109.146019
[11] Benchabane M, Schluter U, Vorster J , et al. Plant cystatins. Biochimie, 2010,92:1657-1666.
doi: 10.1016/j.biochi.2010.06.006
[12] Zhang X, Liu S, Takano T . Two cysteine proteinase inhibitors from Arabidopsis thaliana,AtCYSa and AtCYSb,increasing the salt,drought,oxidation and cold tolerance. Plant Molecular Biology, 2008,68:131-143.
doi: 10.1007/s11103-008-9357-x
[13] Quain M D, Makgopa M E, Marquez-Garcia B , et al. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnology Journal, 2014,12:903-913.
doi: 10.1111/pbi.2014.12.issue-7
[14] Kunert K J, van Wyk S G, Cullis C A , et al. Potential use of phytocystatins in crop improvement,with a particular focus on legumes. Journal of Experimental Botany, 2015,66:3559-3570.
doi: 10.1093/jxb/erv211 pmid: 25944929
[15] Martinez M, Abraham Z, Carbonero P , et al. Comparative phylogenetic analysis of cystatin gene families from arabidopsis,rice and barley. Molecular Genetics & Genomics, 2005,273:423-432.
doi: 10.1007/s00438-005-1147-4 pmid: 15887031
[16] Bangrak P, Chotigeat W . Molecular cloning and biochemical characterization of a novel cystatin from Hevea rubber latex. Plant Physiology and Biochemistry, 2011,49:244-250.
doi: 10.1016/j.plaphy.2010.12.007 pmid: 21247772
[17] Kumar D, Kirti P B . Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen,Phaeoisariopsis personata. PloS One, 2015,10:e0117559.
doi: 10.1371/journal.pone.0117559
[18] Yang A H, Yeh K W . Molecular cloning,recombinant gene expression,and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no.1). Planta, 2005,221:493-501.
doi: 10.1007/s00425-004-1462-8
[19] Valdes-Rodriguez S, Cedro-Tanda A, Aguilar-Hernandez V , et al. Recombinant amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic fungi. Plant Physiology and Biochemistry, 2010,48:469-475.
doi: 10.1016/j.plaphy.2010.03.012 pmid: 20403704
[20] Pirovani C P, da Silva Santiago A, dos Santos L S , et al. Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms. Planta, 2010,232:1485-1497.
doi: 10.1007/s00425-010-1272-0
[21] Pernas M, López-Solanilla E, Sánchez-Monge R , et al. Antifungal activity of a plant cystatin. Molecular Plant-Microbe Interactions, 1999,12(7):624-627.
doi: 10.1094/MPMI.1999.12.7.624
[22] Soares-Costa A, Beltramini L M, Thiemann O H , et al. A sugarcane cystatin:recombinant expression,purification,and antifungal activity. Biochemical and Biophysical Research Communications, 2002,296(5):1194-1199.
doi: 10.1016/S0006-291X(02)02046-6 pmid: 12207900
[23] Christova P K, Christov N K, Imai R . A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus,Microdochium nivale. Planta, 2006,223(6):1207-1218.
doi: 10.1007/s00425-005-0169-9
[24] Martinez M, Lopez-Solanilla E, Rodriguez-Palenzuela P , et al. Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties.Molecular Plant-Microbe Interactions, 2003,16(10):876-883.
[25] Abraham Z, Martinez M, Carbonero P , et al. Structural and functional diversity within the cystatin gene family of Hordeum vulgare. Journal of Experimental Botany, 2006,57(15):4245-4255.
doi: 10.1093/jxb/erl200 pmid: 17099080
[26] Martinez M, Abraham Z, Gambardella M , et al. The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. Journal of Experimental Botany, 2005,56(417):1821-1829.
doi: 10.1093/jxb/eri172 pmid: 15897228
[27] Popovic M, Andjelkovic U, Burazer L , et al. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa). Phytochemistry, 2013,94:53-59.
doi: 10.1016/j.phytochem.2013.06.006
[28] Porruana R, Chundetb R, Anuntalabhochaia S . Characterization of a cDNA encoding cystatin with antifungal activity from Siam tulip Curcuma alismatifolia. Science Asia, 2013,39:596-604.
doi: 10.2306/scienceasia1513-1874.2013.39.596
[29] Cheng M L, Tzen J T C, Shyu D J H , et al.Functional characterization of the N-terminal and C-terminal domains of a sesame group II phytocystatin. Botanical Studies, 2014,55(1):1-10.
doi: 10.1186/1999-3110-55-1
[30] Sajid M, McKerrow J H . Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology, 2002,120:1-21.
doi: 10.1016/S0166-6851(01)00438-8
[31] Shingles J, Lilley C J, Atkinson H J , et al. Meloidogyne incognita:molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Experimental Parasitology, 2007,115:114-120.
doi: 10.1016/j.exppara.2006.07.008
[32] 吕春花, 肖罗, 茆振川 , 等. 相似穿孔线虫 S 型半胱氨酸蛋白酶基因克隆与序列分析. 植物保护, 2008,34:17-22.
[33] Urwin P E, Levesley A, McPherson M J , et al. Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Molecular Breeding, 2000,6:257-264.
doi: 10.1023/A:1009669325944
[34] Samac D A, Smigocki A C . Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode. Phytopathology, 2003,93:799-804.
doi: 10.1094/PHYTO.2003.93.7.799
[35] Gao S, Yu B, Zhai H , et al. Enhanced stem nematode resistance of transgenic sweetpotato plants expressing oryzacystatin-I gene. Agricultural Sciences in China, 2011,10:519-525.
doi: 10.1016/S1671-2927(11)60032-1
[36] Tripathi L, Babirye A, Roderick H , et al. Field resistance of transgenic plantain to nematodes has potential for future African food security. Scientific Reports, 2015,5:8127.
doi: 10.1038/srep08127
[37] Vieira P, Wantoch S, Lilley C J , et al. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv.‘Nellie White’. Transgenic Research, 2015,24:421-432.
doi: 10.1007/s11248-014-9848-2
[38] Chan Y L, Yang A H, Chen J T , et al. Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Reports, 2010,29:231-238.
doi: 10.1007/s00299-009-0815-y
[39] Roderick H, Tripathi L, Babirye A , et al. Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Molecular Plant Pathology, 2013,13:842-851.
doi: 10.1111/j.1364-3703.2012.00792.x pmid: 22435592
[40] Bakhetia M, Charlton W L, Urwin P E , et al. RNA interference and plant parasitic nematodes. Trends in Plant Science, 2005,10:362-367.
doi: 10.1016/j.tplants.2005.06.007 pmid: 16027029
[41] Oppert B, Morgan T D, Hartzer K , et al. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle,Tribolium castaneum (Herbst)(Coleoptera:Tenebrionidae).Comparative Biochemistry and Physiology-Part C:Toxicology & Pharmacology, 2003,134:481-490.
[42] Aguiar J M, Franco O L, Rigden D J , et al. Molecular modeling and inhibitory activity of cowpea cystatin against bean bruchid pests.Proteins:Structure,Function, and Bioinformatics, 2006,63:662-670.
doi: 10.1002/prot.20901 pmid: 16470583
[43] Kiggundu A, Muchwezi J, Van der Vyver C , et al.Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus. Archives of Insect Biochemistry and Physiology, 2010,73:87-105.
doi: 10.1002/arch.20342 pmid: 20035549
[44] Rahbé Y, Deraison C, Bonadé-Bottino M , et al. Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Science, 2003,164:441-450.
doi: 10.1016/S0168-9452(02)00402-8
[45] Ninković S, Miljuš-Đukić J, Radović S , et al.Phytodecta fornicata Brüggemann resistance mediated by oryzacystatin II proteinase inhibitor transgene.Plant Cell, Tissue and Organ Culture, 2007,91:289-294.
doi: 10.1007/s11240-007-9296-2
[46] Cingel A, Savic J, Vinterhalter B , et al. Growth and development of Colorado potato beetle larvae,Leptinotarsa decemlineata,on potato plants expressing the oryzacystatin II proteinase inhibitor. Transgenic Research, 2015,24:729-740.
doi: 10.1007/s11248-015-9873-9
[47] Carrillo L, Martinez M, Alvarez-Alfageme F , et al. A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic arabidopsis plants. Transgenic Research, 2011,20:305-319.
doi: 10.1007/s11248-010-9417-2
[48] Alvarez-Alfageme F, Martinez M, Pascual-Ruiz S , et al. Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Research, 2007,16:1-13.
doi: 10.1007/s11248-006-9022-6
[49] Carrillo L, Martinez M, Ramessar K , et al. Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Reports, 2011,30:101-112.
doi: 10.1007/s00299-010-0948-z
[50] Orr G L, Strickland J A, Walsh T A . Inhibition of diabrotica larval growth by a multicystatin from potato tubers. Journal of Insect Physiology, 1994,40:893-900.
doi: 10.1016/0022-1910(94)90023-X
[51] Bown D P, Wilkinson H S, Jongsma M A , et al. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Insect Biochemistry and Molecular Biology, 2004,34:305-320.
doi: 10.1016/j.ibmb.2003.11.005
[52] Koiwa H, Shade R E, Zhu-Salzman K , et al. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera). FEBS Letters, 2000,471:67-70.
doi: 10.1016/S0014-5793(00)01368-5
[53] Cipriani G, Fuentes S, Bello V , et al. Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus//CIP program report 1999-2000, International Potato Center, 2001: 267-271.
[54] Gutierrez-Campos R, Torres-Acosta J A, Saucedo-Arias L J , et al.The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotechnology, 1999,17:1223-1226.
doi: 10.1038/70781
[55] Popovic M, Andjelkovic U, Grozdanovic M , et al. In vitro antibacterial activity of cysteine protease inhibitor from kiwifruit (Actinidia deliciosa). Indian Journal of Microbiology, 2013,53(1):100-105.
doi: 10.1007/s12088-012-0319-2
[56] Senthilkumar R, Cheng C P, Yeh K W . Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnology Journal, 2014,8:65-75.
doi: 10.1007/s11816-013-0298-8
[57] Carrillo L, Herrero I, Cambra I , et al. Differential in vitro and in vivo effect of barley cysteine and serine protease inhibitors on phytopathogenic microorganisms. Plant Physiology and Biochemistry, 2011,49:1191-1200.
doi: 10.1016/j.plaphy.2011.03.012
[58] Li R, Rashotte A M, Singh N K , et al. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes:a perspective. Plant Cell Reports, 2015,34:5-22.
doi: 10.1007/s00299-014-1676-6
[59] Fujimoto T, Tomitaka Y, Abe H , et al. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. Journal of Plant Physiology, 2011,168:1084-1097.
doi: 10.1016/j.jplph.2010.12.002
[60] Dutt S, Pandey D, Kumar A . Jasmonate signal induced expression of cystatin genes for providing resistance against Karnal bunt in wheat. Plant Signaling and Behavior, 2011,6:821-830.
doi: 10.4161/psb.6.6.14743
[61] Dutt S, Gaur V S, Taj G , et al. Differential induction of two different cystatin genes during pathogenesis of karnal bunt (Tilletia indica) in wheat under the influence of jasmonic acid. Gene, 2012,506:253-260.
doi: 10.1016/j.gene.2012.06.028
[62] Martinez M, Rubio-Somoza I, Fuentes R , et al. The barley cystatin gene (Icy) is regulated by DOF transcription factors in aleurone cells upon germination. Journal of Experimental Botany, 2005,56:547-556.
doi: 10.1093/jxb/eri033
[63] Keyster M, Adams R, Klein A , et al. Nitric oxide (NO) regulates the expression of single-domain cystatins in Glycine max (soybean). Plant Omics, 2013,6:183-192.
doi: 10.1111/nph.12179
[64] Jacobs A F A . Identification of regulatory elements mediating responses of SOD and cystatin transcripts to salt stress and nitric oxide in soybean nodules. Stellenbosch:Stellenbosch University, 2012.
[65] Girard C, Rivard D, Kiggundu A , et al. A multicomponent,elicitor-inducible cystatin complex in tomato,Solanum lycopersicum. The New Phytolists, 2007,173:841-851.
doi: 10.1111/j.1469-8137.2007.01968.x pmid: 17286832
[1] 王丰丰 王 萍 陈 利 代彩玲 李书颉 张贺平. 基于植物学性状分析籽用南瓜的形态多样性[J]. 作物杂志, 2018, (5): 77–84
[2] 温辉芹,程天灵,裴自友,李雪,张立生,朱玫. 山西省近年审定小麦品种的综合性状分析[J]. 作物杂志, 2018, (4): 32–36
[3] 熊伟姣,王亚伦,姚绍嫦,潘春柳,肖冬,王爱勤,何龙飞. MicroRNA在高等植物逆境响应中的作用机制研究进展[J]. 作物杂志, 2018, (1): 1–8
[4] 董志敏,厉志,刘佳,陈亮,衣志刚,王博,刘宝权. 大豆抗灰斑病研究进展[J]. 作物杂志, 2017, (3): 1–5
[5] 赵振杰,梁太波,陈千思,胡利伟,张艳玲,尹启生. 碳纳米材料对植物生长发育的调节作用[J]. 作物杂志, 2017, (2): 7–13
[6] 段俊枝,李莹,赵明忠,李清州,张莉,魏小春,任银铃. NAC转录因子在植物抗非生物胁迫基因工程中的应用进展[J]. 作物杂志, 2017, (2): 14–22
[7] 单玮玉,徐永清,孙美丽,柴莹,宿飞飞,孙旭红,李秀钰,李磊,李凤兰. 黑龙江省主栽马铃薯品种对燕麦镰刀菌(F. avenaceum)和拟枝孢镰刀菌(F. sporotrichioides)的抗病性评价[J]. 作物杂志, 2017, (2): 38–43
[8] 罗昊文,孔雷蕾,钟卓君,谢萝雅,赵旭生,林子秋,唐湘如. 淹水胁迫对水稻玉香油占秧苗生长和生理特性的影响[J]. 作物杂志, 2017, (1): 135–139
[9] 高志勇,谢恒星,王志平,刘史力. 植物突变体库的作用及构建研究进展[J]. 作物杂志, 2016, (6): 16–19
[10] 柏祥,塔莉,赵美微,刘传才,魏国印,崔力拓,曾广娟,秦津. 外来入侵植物反枝苋的最新研究进展[J]. 作物杂志, 2016, (4): 7–14
[11] 张红岩,杨涛,关建平,杨生华,方俐,杜萌莹,宗绪晓. 蚕豆抗绿豆象种质资源的鉴定[J]. 作物杂志, 2016, (4): 86–92
[12] 左应梅,杨维泽,杨天梅,杨美权,许宗亮,杨绍兵,张金渝. 干旱胁迫下4种人参属植物抗性生理指标的比较[J]. 作物杂志, 2016, (3): 84–88
[13] 董芳,张超凡. 甘薯病毒病防控措施研究进展与展望[J]. 作物杂志, 2016, (3): 6–11
[14] 张雪,尹悦佳,范贝,李慧杰,费小钰,崔喜艳. 植物Dof转录因子的结构特点及功能研究进展[J]. 作物杂志, 2016, (2): 14–20
[15] 袁月,郑有飞,赵辉,储仲芳,黄积庆. 臭氧与其他环境因子及其复合作用对植物的影响[J]. 作物杂志, 2016, (1): 16–22
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .