作物杂志,2019, 第4期: 196–202 doi: 10.16035/j.issn.1001-7283.2019.04.030

• 植物保护 • 上一篇    

芝麻茎点枯病菌Macrophominaphaseolina纤维素降解酶活性分析

高树广1,2,徐博涵2,赵辉1,倪云霞1,李伟峰2,王瑞霞2,徐东阳2,杨光宇2,刘红彦1   

  1. 1 河南省农业科学院植物保护研究所,450002,河南郑州
    2 周口市农业科学院,466001,河南周口
  • 收稿日期:2019-03-11 修回日期:2019-07-10 出版日期:2019-08-15 发布日期:2019-08-06
  • 通讯作者: 刘红彦
  • 作者简介:高树广,助理研究员,从事芝麻抗病遗传和栽培技术研究
  • 基金资助:
    国家特色油料产业技术体系(CARS-14)

Analysis of Cellulase Activities of Macrophomina phaseolina in Sesame

Gao Shuguang1,2,Xu Bohan2,Zhao Hui1,Ni Yunxia1,Li Weifeng2,Wang Ruixia2,Xu Dongyang2,Yang Guangyu2,Liu Hongyan1   

  1. 1 Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2 Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, Henan, China
  • Received:2019-03-11 Revised:2019-07-10 Online:2019-08-15 Published:2019-08-06
  • Contact: Hongyan Liu

摘要:

测定芝麻茎点枯病菌(Macrophomina phaseolina)产生的纤维素降解酶的种类及活性大小,为进一步探讨其在致病过程中的作用奠定基础。从不同地区采集7株芝麻茎点枯病菌,液体培养提取粗酶液,采用分光光度法在540nm波长下测定离体条件下芝麻茎点枯病菌分泌的纤维素降解酶活性及变化趋势。结果表明:7个菌株均能检测到滤纸酶、天然纤维素降解酶、内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶活性,酶活变化趋势表明不同采样时间酶活力大小不同,酶活变化趋势上都有峰值出现,但是不同菌株出现峰值的时间不同,酶活力综合活性大小差异极显著。说明芝麻茎点枯病菌能分泌一组胞外降解纤维素的酶系,并且该酶系能够降解芝麻秸秆纤维素,该结果为揭示芝麻茎点枯病菌对芝麻的致病机理提供理论依据。

关键词: 芝麻, 茎点枯病菌, 纤维素降解酶

Abstract:

To determine the types and activities of cellulases secreted by Macrophomina phaseolina and explore their roles in pathogenic process, seven strains of M. phaseolina were collected from different regions and studied. The crude enzyme solution was prepared by liquid culture. The activities and change graphs of cellulases in vitro were determined by spectrophotometry at 540nm wavelength. The results showed that the activities of filter paper enzyme, natural cellulase, endoglucanase, exoglucanase and β-glucosidase could be detected in all seven strains, and the enzyme activity of seven strains was different at different sampling time by observing the enzymatic activity curves. There were peaks on the enzyme activity curve but the time of peak value was different in different M. phaseolinas strains. In addition, there were significant differences in the comprehensive enzyme activities. It proved that M. phaseolina could secrete a group of extracellular cellulose and the cellulases could degrade cellulose of sesame straw. It provided an important theoretical basis to study the pathogenic mechanism of M. phaseolina in sesame.

Key words: Sesame, Macrophomina phaseolina, Cellulase

表1

供试菌株"

菌株
Strains
采集年份
Year of collection
采集地点
Location of collection
2010003 2010 江西省鄱阳县清湖村
Qinghu, Poyang, Jiangxi
2010010 2010 江苏省盱眙县龙泉村
Longquan, Xuyi, Jiangsu
2010028 2010 河南省唐河县赵庄村
Zhaozhuang, Tanghe, Henan
2010032 2010 湖北省襄樊钟岗服务区
Zhonggang Service Area, Xiangfan, Hubei
2010064 2010 河南省平舆县王栋桥庄
Wangdongqiao, Pingyu, Henan
2010082 2010 安徽省临泉县李窑村
Liyao, Linquan, Anhui
G243 2011 辽宁省朝阳县胜利乡
Shengli, Chaoyang, Liaoning

图1

葡萄糖标准曲线"

图2

芝麻茎点枯病菌滤纸酶活性"

图3

芝麻茎点枯病菌天然纤维素酶活性"

图4

芝麻茎点枯病菌内切葡聚糖酶活性"

图5

芝麻茎点枯病菌外切葡聚糖酶活性"

图6

芝麻茎点枯病菌β-葡萄糖苷酶活性"

表2

芝麻茎点枯病菌纤维素降解酶A值大小比较"

编号Number 2010003 2010010 2010028 2010032 2010064 2010082 G243
滤纸酶Filter paper enzyme 2.214Aa 0.838CDc 1.258Bb 0.973Cc 0.591Dd 2.112Aa 0.973Cc
天然纤维素酶Natural cellulase 2.407Aa 0.870DEde 1.611Cb 1.306Cc 0.707Ee 2.451Aa 1.074CDcd
内切葡聚糖苷酶Endoglucanase 3.614Bb 2.413De 3.017Cc 2.782Cd 2.017Ef 3.947Aa 2.801Ccd
外切葡聚糖苷酶Exoglucanase 0.436Aa 0.108Ccd 0.161Bb 0.140Cbc 0.049De 0.456Aa 0.101Cd
β-葡萄糖苷酶β-glucosidase 5.104Bb 0.379Dd 1.686Cc 0.932CDcd 0.313Dd 12.210Aa 0.626CDd
[1] Bulent U, Ilhan C M . Comparison of determinate and indeterminate lines of sesame for agronomic traits. Field Crops Research, 2006,96(1):13-18.
[2] 李丽丽 . 世界芝麻病害研究进展. 中国油料, 1993(2):75-77.
[3] 李丽丽 . 我国芝麻病害种类研究概况及展望. 中国油料, 1989(1):13-18.
[4] Thiyagu K, Candasamy G, Manivannan N . Resistant genotypes to root rot disease (Macrophomina phaseolina) of sesame (Sesamum Indicum L.). Agricultural Science Digest, 2007,27(1):34-37.
[5] EI-Fiki A I I, EI-Deeb A A, Mohamed F G . Controlling sesame charcoal rot incited by Macrophomina phaseolina under field conditions by using the resistant culivars and some seed and soil treatments. Egyptian Journal of Phytopathology, 2004,32(1/2):103-118.
[6] Dinakaran D, Mohammed N . Identification of resistant sources to root rot of sesame caused by Macrophomina phaseolina (Tassi) Goid. Sesame and Safflower Newslette, 2001,16:68-71.
[7] Suriachandraselvan M, Seetharaman K . Survial of Macrophomina phaseolina,the causal agent of charcoal rot of sunflower in soil,seed and plant debris. Journal of Mycology and Plant Pathology, 2000,30(3):402-405.
[8] Pecina V, Alanis H W, Almaraz R D . Detection of double-stranded RNA in Macrophomina phaseolina. Mycologia, 2000,92(5):900-907.
[9] Bandamaravuri K B, Ani1 K S, Alok K S , et al. Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia, 2007,99(6):797-803.
[10] Beckman C H. The nature of wilt diseases of plants. St. Paul: American Phytopathological Society Press, 1987.
[11] Choi G H, Larson T G, Nuss D L . Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression an isogenic hypovirulent strain. Plant-Microbe Interactions, 1992,5(2):119-128.
[12] An H J, Lurie S, Greve L C , et al. Determination of pathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products of plant cell walls. Analytical Biochemistry, 2005,338(1):71-82.
[13] 陈捷, 高洪敏, 纪明山 , 等. 玉米茎腐病菌产生的细胞壁降解酶的致病作用. 植物病理学报, 1998,28(3):221-226.
[14] 陈夕军, 张红, 徐敬友 , 等. 水稻纹枯病菌胞壁降解酶的产生及致病作用. 江苏农业学报, 2006,22(1):24-28.
[15] 陈尚武, 张大鹏, 张维一 . 匍枝根霉和半裸镰刀菌侵染甜瓜果实产生的胞壁降解酶与侵染方式. 植物病理学报, 1998,28(1):55-60.
[16] Fernando C N, Concepcion H, Antonio D P , et al. Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum. Fungal Genetics and Biology, 2008,45(1):28-34.
[17] Aro N, Pakula T, Penttil M . Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 2005,29(4):719-739.
[18] Lynd L R, Wemer P J, Van W H . Microbial cellulose utilization:fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002,66(3):506-577.
[19] Schwarz W H . The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology, 2001,56(5):634-664.
[20] Pratt R G . A direct observation technique for evaluating sclerotium germination by Macrophomina phaseolina and effects of biocontrol materials on survival of sclerotia in soil. Mycopathologia, 2006,162(2):121-131.
[21] Victor P, Mariade J A, Hector W A . Detection of double-stranded RNA in Macrophomina phaseolina. Mycologia, 2000,92(5):900-907.
[22] Jana T, Sharma T R, Singh N K . SSR-based detection of genetic variability in the charcoal root rot pathogen Macrophomina phaseolina. Mycological Research, 2005,109(1):81-86.
[23] Kim T H, Kim J S, Sunwoo C , et al. Pretreatment of corn stover by aqueous ammonia. Bioresource Technology, 2003,90(1):39-47.
[24] 习兴梅, 曾光明, 郁红艳 , 等. 黑曲霉Aspergillus niger木质纤维素降解能力及产酶研究. 农业环境科学学报, 2007,26(4):1506-1511.
[25] 李振红, 陆贻通 . 高效纤维素降解菌的筛选. 环境污染与防治, 2003,25(3):133-135,153.
[26] 林加涵, 魏文铃, 彭宣宪 . 现代生物学实验下册. 北京: 高等教育出版社, 2001.
[27] 王洪媛, 范丙全 . 三株高效秸秆纤维素降解真菌的筛选及其降解效果. 微生物学报, 2010,50(7):870-875.
[28] 高树广, 赵辉, 李伟峰 , 等. 芝麻茎点枯病菌两种细胞壁降解酶活性分析. 植物保护, 2018,41(5):75-78.
[29] 王锡锋, 何文兰, 何家泌 . 小麦品种的慢白粉病性田间鉴定. 植物保护学报, 1991, 18(3): 230, 240.
[30] 刘喜存, 刘红彦, 倪云霞 , 等. 不同化学诱抗剂对金银花叶片防御酶系的影响. 植物保护, 2009,35(2):75-77.
[31] 张桂芝, 杨世忠, 张维一 . 酚类物质对哈密瓜两种主要致腐病原产生的细胞壁降解酶活性的影响. 食品科学, 2006,27(8):125-129.
[32] 刘福昌, 李美娜, 王永洤 . 苹果树腐烂病菌致病因素—果胶酶的初步探讨. 中国果树, 1980(4):45-49.
[33] 陈晓林, 牛程旺, 李保华 , 等. 苹果树腐烂病菌产生细胞壁降解酶的种类及其活性分析. 华北农学报, 2012,27(2):207-212.
doi: 10.3969/j.issn.1000-7091.2012.02.039
[1] 高桐梅,李丰,吴寅,魏利斌,王东勇,田媛,费高亮,卫双玲. 不同灌溉方式对芝麻冠层结构及群体质量的影响[J]. 作物杂志, 2019, (3): 162–167
[2] 吕伟,文飞,韩俊梅,王若鹏,任果香,刘文萍,乐美旺,孙建. 昆虫授粉对芝麻产量构成因素的影响[J]. 作物杂志, 2018, (6): 124–129
[3] 赵莉,汪强,林勇翔,张祎. 江淮黄褐土壤芝麻肥效研究[J]. 作物杂志, 2017, (6): 154–159
[4] 桑利民,徐婧,赵晓清,郭元章,蹇家利,郝小玉,郭久林,高永海,韩建国,徐桂真. 地膜覆盖对不同芝麻品种农艺性状及产量构成因素的影响[J]. 作物杂志, 2017, (6): 140–146
[5] 吕伟,刘文萍,任果香,文飞,韩俊梅,王若鹏. 不同浓度生根粉对芝麻生长及产量的影响[J]. 作物杂志, 2017, (5): 100–105
[6] 孙建, 魏星, 乐美旺, 等. 芝麻繁育特性研究Ⅱ:异花传粉媒介的确定[J]. 作物杂志, 2015, (3): 36–40
[7] 颜小文, 乐美旺, 饶月亮, 等. 高产优质芝麻新品种赣芝10号的选育及其栽培技术[J]. 作物杂志, 2014, (3): 151–152
[8] 杨三维, 张明义. 晋芝8号新品种选育及其栽培技术[J]. 作物杂志, 2013, (4): 154–155
[9] 刘立峰, 郑磊, 张仙美, 梁彦桢, 吴鹤敏, 邵艳芳, 张秀荣, 王林海, 沈荟祥. 部分芝麻新品种耐渍性鉴定[J]. 作物杂志, 2012, (4): 98–101
[10] 赵莉, 汪强, 徐桂珍, 等. 播种期和种植密度对芝麻产量及其构成因子的影响[J]. 作物杂志, 2010, (5): 111–113
[11] 张根峰, 张翼. 渍涝胁迫对芝麻生理指标及产量性状的影响[J]. 作物杂志, 2010, (1): 84–86
[12] 梅鸿献, 张海洋, 郑永战, 等. 郑杂芝3号的选育及其高效配套技术[J]. 作物杂志, 2009, (4): 110–110
[13] 乐美旺, 肖运萍, 饶月亮, 等. 芝麻化感作用及其研究进展[J]. 作物杂志, 2008, (4): 15–18
[14] 肖月土, 叶为波, 顾培勇. 芝麻优质高产栽培技术[J]. 作物杂志, 2007, (6): 80–81
[15] 张大群, 徐洪志, 曾川, 等. 重庆地区芝麻种质资源搜集整理鉴定及核心样品分析[J]. 作物杂志, 2007, (5): 21–23
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[2] 李程勋,李爱萍,徐晓俞,郑开斌. 浅谈木豆的抗逆机制及在福建的应用前景[J]. 作物杂志, 2018, (4): 28 –31 .
[3] 张微,王良群,刘勇,郝艳芳,杨伟,白鸿雁,武擘. 农杆菌介导高粱遗传转化的相关因素优化[J]. 作物杂志, 2018, (1): 56 –61 .
[4] 王洁,曾波,雷财林,赵志超,王久林,程治军. 北方国家水稻区域试验近15年参试品种分析[J]. 作物杂志, 2018, (1): 71 –76 .
[5] 丁素荣, 杨学文, 生国莉, 刘迎春,. 燕麦新品种赤燕7号的选育及栽培技术[J]. 作物杂志, 2013, (3): 154 –155 .
[6] 孟凡立, 王志坤, 藏振源, 等. 异黄酮含量与大豆对大豆蚜虫抗性之间的关系[J]. 作物杂志, 2011, (3): 11 –15 .
[7] 高玉良. 大寨人缅怀李竞雄先生[J]. 作物杂志, 2013, (5): 3 .
[8] 王巍, 刘兴焱, 何长安, 等. 极早熟玉米新品种克玉16的选育及栽培技术[J]. 作物杂志, 2014, (1): 158 .
[9] 胡德光. 皖南丘陵地区油菜穴播技术[J]. 作物杂志, 1996, (5): 11 .
[10] 崔淑芳, 崔瑞敏. MC和灌水对棉花生长发育影响的研究[J]. 作物杂志, 1995, (3): 28 –29 .