作物杂志,2019, 第6期: 104–113 doi: 10.16035/j.issn.1001-7283.2019.06.017

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同耕作处理对土壤微生物、酶活性及养分的影响

黄炳林,王孟雪,金喜军,胡国华,张玉先   

  1. 黑龙江八一农垦大学农学院,163319,黑龙江大庆
  • 收稿日期:2019-05-23 修回日期:2019-10-11 出版日期:2019-12-15 发布日期:2019-12-11
  • 通讯作者: 张玉先
  • 作者简介:黄炳林,硕士,主要从事大豆高产生理生态研究
  • 基金资助:
    国家现代农业产业技术体系项目(CARS-04-01A);黑龙江省自然科学基金(C2017049);黑龙江省农垦总局重点科研计划项目(HNK135-02-06)

Effects of Different Tillage Treatments on Soil Microorganisms, Enzyme Activities and Nutrients

Huang Binglin,Wang Mengxue,Jin Xijun,Hu Guohua,Zhang Yuxian   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2019-05-23 Revised:2019-10-11 Online:2019-12-15 Published:2019-12-11
  • Contact: Yuxian Zhang

摘要:

为揭示不同耕作处理对土壤微生物、酶活性以及养分的影响,利用大豆为材料,采取两种不同耕作方式为主区,4种中耕方式为副区的裂区试验设计。结果表明:旋耕处理的细菌数量在开花期较翻耕处理降低;旋耕处理的真菌数量在成熟期较翻耕处理提高;而放线菌数量在开花期,翻耕处理较旋耕处理提高,到结荚期却显著低于旋耕处理。翻耕处理的脲酶活性除了在鼓粒期低于旋耕处理,在其他生育期均高于旋耕处理;翻耕处理的土壤磷酸酶活性在结荚期、鼓粒期较旋耕处理提高;翻耕处理的土壤蔗糖酶活性在开花期较旋耕处理提高;翻耕处理在开花期与结荚期的过氧化氢酶(CAT)活性较旋耕处理提高。翻耕处理的速效磷含量较旋耕处理显著提高,速效钾含量旋耕处理较翻耕处理显著提高。在不同中耕措施中,土壤细菌数量在开花期RT1、RT2较RCK显著提高;真菌数量在成熟期PT1、PT2、PT3较PCK降低;各时期的放线菌数量PT2与RT2均较高。在各生育期,PT2、RT2的脲酶活性均较高,在开花期PT2较PCK和RT2较RCK显著提高;土壤磷酸酶活性PT2、RT2在各时期亦较高;土壤蔗糖酶活性在大豆成熟期不同处理均高于各自的CK;在大豆成熟期,PT1较PCK和RT1较RCK的CAT活性提高。不同中耕措施的土壤有机质含量除了RT2显著提高外,其他处理间差异不显著,而碱解氮、速效钾含量PT2、RT2均分别显著高于PCK、RCK。综上可知,PT2组合的耕作处理更有利于保护土壤微环境。

关键词: 耕作, 中耕, 土壤微生物, 土壤酶, 土壤养分

Abstract:

In order to reveal the effects of different tillage treatments on soil microorganisms, enzyme activities and nutrients, two different tillage methods and four intertillage methods were used as primary tillage and secondary tillage. The results showed that the number of bacteria of rotary tillage decreased compared with that of ploughing in the flowering stage. The number of fungi of rotary tillage was higher than that of ploughing in the mature stage. However, the number of actinomycetes of ploughing increased in the flowering stage and decreased significantly in the podding stage compared with that of rotary tillage. In the podding stage the activity of urease of ploughing was lower than that of rotary tillage, but in the other growth stages were higher than that of rotary tillage. The activity of soil phosphatase of ploughing was higher than that of rotary tillage, which was increased in podding stage and bulging stage. The activity of sucrase of ploughing increased compared with that of rotary tillage in the flowering stage. The catalase activity of ploughing in the flowering and podding stage increased compared with that of rotary tillage. The available phosphorus content of ploughing was higher than that of rotary tillage. The available potassium content of rotary tillage was significantly higher than that of ploughing. In different tillage measures, the number of bacteria in flowering stage, RT1 and RT2 significantly increased compared with RCK. The number of fungi in the mature stage, PT1, PT2 and PT3 decreased compared with PCK. The quantity of actinomycetes increased in both PT2 and RT2 in each growth stage. In each growth stage, the soil urease activities of PT2 and RT2 were all relatively high, and PT2 compared with PCK and RT2 compared with RCK were significantly increased, respectively. The soil phosphatase activity of PT2 and RT2 were all relatively high in each growth stage. Soil sucrase activity was higher than the CK in different treatments in the mature stage. In the mature stages, the catalase activity of PT1 and RT1 was increased compared with that of PCK and RCK. In addition to the soil organic matter content of RT2 was significantly increase, there was no significant difference between other treatments. However, alkaloidal nitrogen and available potassium content were significantly higher than PCK and RCK in PT2 and RT2. In conclusion, PT2 combination tillage treatment is more conducive to the protection of soil microenvironment.

Key words: Tillage, Intertillage, Soil microorganisms, Soil enzymes, Soil nutrients

表1

不同处理方试"

耕作措施
Tillage measure
中耕方式
Intertillage method
处理组合
Treatment combination
播种后4~5d
4~5 days after sowing
V2~V3期
V2~V3 stage
V4~V5期
V4~V5 stage
V6~V7期
V6~V7 stage
T1 PT1 小培土 - 中培土 大培土
翻耕(P) Ploughing T2 PT2 深松25~30cm - 深松30~35cm+中培土 大培土
T3 PT3 - 深松25~30cm 深松30~35cm 大培土
CK PCK - 小培土 中培土 大培土
T1 RT1 小培土 - 中培土 大培土
旋耕(R) Rotary tillage T2 RT2 深松25~30cm - 深松30~35cm+中培土 大培土
T3 RT3 - 深松25~30cm 深松30~35cm 大培土
CK RCK - 小培土 中培土 大培土

图1

不同耕作措施对土壤细菌数量的影响 不同字母代表不同处理间差异显著(P<0.05),下同"

图2

不同耕作措施对土壤真菌数量的影响"

图3

不同耕作措施对土壤放线菌数量的影响"

图4

不同耕作措施对土壤脲酶活性的影响"

图5

不同耕作措施对土壤磷酸酶活性的影响"

图6

不同耕作措施对土壤蔗糖酶活性的影响"

图7

不同耕作措施对土壤CAT活性的影响"

表2

不同耕作措施对土壤养分的影响"

处理
Treatment
有机质含量(g/kg)
Organic matter content
碱解氮含量(mg/kg)
Available nitrogen content
速效磷含量(mg/kg)
Available phosphorus content
速效钾含量(mg/kg)
Available potassium content
PT1 20.65±3.25b 143.83±1.48b 22.79±0.38b 157.50±4.18d
PT2 21.96±1.49b 151.13±1.96a 29.37±0.10a 173.63±1.10b
PT3 21.59±1.81b 142.75±3.66b 21.29±1.49bc 158.23±2.76d
PCK 21.59±3.10b 134.81±4.19c 22.40±3.48b 160.23±2.68d
RT1 23.65±1.49b 141.68±2.57b 18.14±0.19d 171.13±1.15b
RT2 28.72±1.12a 152.62±1.70a 19.19±0.57cd 190.53±0.97a
RT3 22.34±1.97b 145.30±2.07b 17.98±0.67d 187.73±1.70a
RCK 23.28±0.32b 132.66±2.23c 17.53±0.59d 164.50±0.62c
[1] 张帆, 黄凤球, 肖小平 , 等. 冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响. 生态学报, 2009,29(2):734-739.
[2] Ryan M P, Adley C C . Sphingomonas paucimobilis:a persistent Gram-negative nosocomial infectious organism, Journal of Hospital Infection, 2010,75(3):153-157.
doi: 10.1016/j.jhin.2010.03.007
[3] Menders L W, Brossi M J de L, Kuramae E E ,et al. Land-use system shapes soil bacterial communities in Southeastern Amazon region. Applied Soil Ecology, 2015,95(4):151-160.
doi: 10.1016/j.apsoil.2015.06.005
[4] 赵亚丽, 郭海斌, 薛志伟 , 等. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015,26(6):1785-1792.
[5] 隋鹏祥, 张心昱, 温学发 , 等. 耕作方式和秸秆还田对棕壤土壤养分和酶活性的影响. 生态学杂志, 2016,35(8):2038-2045.
[6] 陈闯, 吴景贵, 杨子仪 . 不同有机肥及其混施对黑土酶活性动态变化的影响. 水土保持学报, 2014,28(6):245-250.
[7] 王碧胜, 蔡典雄, 武雪萍 , 等. 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015,21(6):1455-1464.
doi: 10.11674/zwyf.2015.0610
[8] 虞舟鲁, 邱乐丰, 林霖 . 土地利用方式变化对农业土壤有机碳空间分布的影响. 浙江农业学报, 2017,29(5):806-811.
[9] 陈朝, 吕昌河, 范兰 , 等. 土地利用变化对土壤有机碳的影响研究进展. 生态学报, 2011,31(18):5358-5371.
[10] 张德喜, 吴卿 . 不同耕作方式对农田土壤养分含量及土壤酶活性的影响. 江苏农业科学, 2018,46(11):234-237.
[11] Wu L F, Li B B, Qin Y , et al. Soil CO2 emission and carbon budget of a wheat/maize annual double-cropped system in response to tillage and residue management in the North China Plain. International Journal of Agricultural Sustainability, 2017,15(3):253-263.
doi: 10.1080/14735903.2017.1288518
[12] 王小玲, 马琨, 汪志琴 , 等. 冬小麦免耕覆盖与有机栽培对土壤微生物群落组成的影响. 中国生态农业学报, 2019,27(2):267-276.
[13] Ekenler M, Tabatabai M A . Tillage and residue management effects on β-glucosaminidase activity in soils. Soil Biology and Biochemistry, 2003,35(6):871-874.
doi: 10.1016/S0038-0717(03)00094-4
[14] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 1999.
[15] 潘静 . 呼和浩特城郊塑料大棚土壤微生物多样性的动态研究. 呼和浩特:内蒙古农业大学, 2015.
[16] 龚子同 . 中国土壤系统分类. 北京: 科学出版社, 1999: 404-409.
[17] 韦持章, 农玉琴, 陈远权 , 等. 茶树/大豆间作对根际土壤微生物群落及酶活性的影响. 西北农业学报, 2018,27(4):537-544.
[18] 盖志佳, 吴嘉彧, 张敬涛 , 等. 大豆玉米持续轮作免耕对土壤养分及作物产量的影响. 中国农学通报, 2019,35(5):100-106.
[19] 张贵云, 吕贝贝, 张丽萍 , 等. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响. 中国生态农业学报, 2019,27(3):358-368.
[20] 李丽娜, 席运官, 陈鄂 , 等. 耕作方式与绿肥种植对土壤微生物组成和多样性的影响. 生态与农村环境学报, 2018,34(4):342-348.
[21] Vida K, Fayez R, Mohammad A . Tillage effects on soil microbial biomass,SOM mineralization and enzyme activity in a semi-arid calcixerepts. Agriculture, Ecosystems and Environment, 2016,232(16):73-84.
doi: 10.1016/j.agee.2016.07.022
[22] 张博文 . 深松对黑土区土壤特性及细菌群落结构影响. 呼和浩特:内蒙古农业大学, 2018.
[23] 贾凤梅, 张淑花, 魏雅冬 . 不同耕作方式下玉米农田土壤养分及土壤微生物活性变化. 水土保持研究, 2018,25(5):112-117.
[24] Martin D L, José R, José C G-H . Post-fire vegetation succession in Mediterranean gorse shrublands. Acta Oecologica, 2006,30(1):54-61.
doi: 10.1016/j.actao.2006.01.005
[25] 周东兴, 李磊, 李晶 , 等. 玉米/大豆轮作下不同施肥处理对土壤微生物生物量及酶活性的影响. 生态学杂志, 2018,37(6):1856-1864.
[26] 李海云, 张建贵, 姚拓 , 等. 退化高寒草地土壤养分、酶活性及生态化学计量特征. 水土保持学报, 2018,32(5):287-295.
[27] Li Z, Jing W, Guo Z F , et al. Rotary tillage in rotation with plowing tillage improves soil properties and crop yield in a wheat-maize cropping system. PLoS ONE, 2018,13(6):e0198193.
doi: 10.1371/journal.pone.0198193 pmid: 29902193
[28] Ding S J, Xiong S P, Ma X M , et al. Effects of tillage and nitrogen application rate on soil nitrogen transformation and yield in a winter wheat/summer maize multiple cropping system. Europe PMC, 2017,28(1):142-150.
doi: 10.13287/j.1001-9332.201701.012 pmid: 29749198
[29] 张文超 . 耕作方式对土壤主要理化性状及玉米产量形成的影响. 大庆:黑龙江八一农垦大学, 2017.
[30] 罗奥 . 不同耕作措施对土壤理化生物性状和大豆产量的影响. 大庆:黑龙江八一农垦大学, 2009.
[31] 胡诚, 曹志平, 叶钟年 , 等. 不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响. 生态学报,2006(3):808-814.
[32] 李玉洁, 王慧, 赵建宁 , 等. 耕作方式对农田土壤理化因子和生物学特性的影响. 应用生态学报, 2015,26(3):939-948.
[33] Tatsuya H, Mu Y H, Masakazu K , et al. Tillage and cover crop species affect soil organic carbon in Andosol,Kanto,Japan. Soil and Tillage Research, 2014,138:64-72.
doi: 10.1016/j.still.2013.12.010
[34] 丁世杰, 熊淑萍, 马新明 , 等. 耕作方式与施氮量对小麦-玉米复种系统玉米季土壤氮素转化及产量的影响. 应用生态学报, 2017,28(1):142-150.
[35] 张志政 . 土壤深松对乌拉尔甘草(Glycyrrhiza uralensis)产量品质和土壤环境的影响. 石河子:石河子大学, 2017.
[1] 李春喜,李斯斯,邵云,马守臣,刘晴,翁正鹏,李晓波. 减氮条件下有机物料还田对麦田酶活性及其土壤碳氮含量的影响[J]. 作物杂志, 2019, (5): 129–134
[2] 张宇飞,刘立志,马昱萱,王晓纯,戴建军. 耕作和秸秆还田方式对玉米产量及钾素积累转运的影响[J]. 作物杂志, 2019, (2): 122–127
[3] 崔勇,马自清,田恩平. 20年来宁夏中南部山区农业生产发展分析[J]. 作物杂志, 2019, (2): 28–38
[4] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[5] 张文超,王玉凤,张翼飞,徐晶宇,吴琼,陈天宇,张鹏飞,庞晨,唐春双,付健,杨克军. 耕作方式对松嫩平原半干旱区土壤养分含量和玉米产量的影响[J]. 作物杂志, 2017, (4): 123–128
[6] 王金云,程宪国,郭继斌,王莉. 设施桃园土壤养分变化规律及评价[J]. 作物杂志, 2017, (3): 96–103
[7] 贾有余,任永峰,高宇,赵沛义,尹秀兰,李彬,蒙美丽. 内蒙古阴山北麓区不同土壤改良剂施用效果研究[J]. 作物杂志, 2017, (2): 130–134
[8] 庞荔丹,孟婷婷,张宇飞,马昱萱,周森,王福林,戴建军. 玉米秸秆配氮还田对土壤酶活性、微生物量碳含量及土壤呼吸量的影响[J]. 作物杂志, 2017, (1): 107–112
[9] 王润莲,张志栋,刘景辉,刘慧军,赵宝平. 免耕不同处理对土壤养分、土壤酶活性及燕麦产量的影响[J]. 作物杂志, 2016, (3): 134–138
[10] 李瑞平, 郑金玉, 罗洋, 等. 鸡粪与立茬还田配合应用对土壤养分和玉米产量的影响[J]. 作物杂志, 2015, (6): 132–135
[11] 蔡丽君, 张敬涛, 刘婧琦, 等. 玉米一大豆免耕轮作体系玉米秸秆还田量对土壤养分和大豆产量的影响[J]. 作物杂志, 2015, (5): 107–110
[12] 马斌, 刘景辉, 张兴隆. 褐煤腐殖酸对旱作燕麦上壤微生物量碳、氮、磷含量及土壤酶活性的影响[J]. 作物杂志, 2015, (5): 134–140
[13] 商丽丽, 杜清福, 韩俊杰, 等. 甘薯重茬对上壤微生物的影响及重茬障碍防治措施研究[J]. 作物杂志, 2015, (4): 126–129
[14] 张皓, 何腾兵, 林昌虎, 等. 不同轮作方式对黔产半夏土壤机械组成与养分含量的影响[J]. 作物杂志, 2015, (2): 101–106
[15] 李娟, 林位夫, 周立军. 成龄胶园间作不同薯类作物对土壤养分与土壤酶的影响[J]. 作物杂志, 2015, (1): 127–132
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王海涛,刘存敬,唐丽媛,张素君,李兴河,蔡肖,张香云,张建宏. 河北省杂交棉培育现状及发展趋势[J]. 作物杂志, 2019, (5): 1 –8 .
[2] 黄玉芳,叶优良,赵亚南,岳松华,白红波,汪洋. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响[J]. 作物杂志, 2019, (5): 104 –108 .
[3] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15 –21 .
[4] 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 1 –7 .
[5] 曹廷杰,张玉娥,胡卫国,杨剑,赵虹,王西成,周艳杰,赵群友,李会群. 黄淮南片麦区新育成品种(系)中3个矮秆基因分子标记检测及其与农艺性状的关系[J]. 作物杂志, 2019, (6): 14 –19 .
[6] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20 –26 .
[7] 王永行,单飞彪,闫文芝,杜瑞霞,杨钦方,刘春晖,白立华. 基于向日葵DUS测试的遗传多样性分析及代码分级[J]. 作物杂志, 2019, (5): 22 –27 .
[8] 师赵康,赵泽群,张远航,徐世英,王宁,王伟杰,程皓,邢国芳,冯万军. 玉米自交系幼苗生物量积累及根系形态对两种氮素水平的反应及聚类分析[J]. 作物杂志, 2019, (5): 28 –36 .
[9] 张中伟,杨海龙,付俊,谢文锦,丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019, (5): 37 –40 .
[10] 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 41 –45 .