作物杂志,2019, 第6期: 27–32 doi: 10.16035/j.issn.1001-7283.2019.06.005

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

谷子矮秆突变体d93090的表型变异及其对赤霉素的敏感性分析

赵丽娟1,袁红梅2,赵丽伟3,郭文栋4,李志江1,李祥羽1,马金丰1,李延东1,宋维富1,杨雪峰1,刘东军1   

  1. 1黑龙江省农业科学院作物资源研究所,150086,黑龙江哈尔滨
    2黑龙江省农业科学院经济作物研究所,150086,黑龙江哈尔滨
    3哈尔滨市阿城区杨树镇政府农业技术综合服务中心,150314,黑龙江哈尔滨
    4黑龙江省科学院自然与生态研究所,150040,黑龙江哈尔滨
  • 收稿日期:2019-05-17 修回日期:2019-10-12 出版日期:2019-12-15 发布日期:2019-12-11
  • 作者简介:赵丽娟,副研究员,主要从事作物资源与遗传育种研究
  • 基金资助:
    黑龙江省自然科学基金面上项目(C201316);哈尔滨市科技局青年后备人才项目(2014RFQYJ138)

The Phenotypic Variations and GA Sensitivity of a Dwarf Mutant d93090 in Foxtail Millet

Zhao Lijuan1,Yuan Hongmei2,Zhao Liwei3,Guo Wendong4,Li Zhijiang1,Li Xiangyu1,Ma Jinfeng1,Li Yandong1,Song Weifu1,Yang Xuefeng1,Liu Dongjun1   

  1. 1Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang,China
    2Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086,Heilongjiang, China
    3Comprehensive Agricultural Technology Service Center, Yangshu Town Government of Acheng District, Harbin 150314, Heilongjiang, China
    4Nature and Ecology Institute, Heilongjiang Academy of Sciences, Harbin 150040, Heilongjiang,China
  • Received:2019-05-17 Revised:2019-10-12 Online:2019-12-15 Published:2019-12-11

摘要:

谷子矮秆突变体93090(暂命名为d93090)是野生型高秆谷子品系93090经 60Co-γ辐射诱变获得的,本研究对其矮化表型及其对赤霉素的敏感性进行了分析。结果表明,d93090株高约为野生型的60%左右,叶色变深、茎秆稍倾斜、茎节数不变、花期较对照推迟3~5d;幼苗期的苗长、第二叶鞘长和胚轴长均对外源GA3敏感,拔节期喷施外源GA3,d93090的株高部分恢复;d93090内源GAl含量显著低于野生型。d93090突变体是个半矮秆的突变类型,为谷子矮化育种提供了新材料,其矮秆性与GA生物合成途径相关。

关键词: 谷子, 半矮秆突变体, 表型, GA3敏感性

Abstract:

Abstact A stably inherited dwarf mutant d93090 was obtained from a wild type tall line 93090 in foxtail millet induced by 60Co-γ irradiation. Then its dwarfing morphology and the characteristics response to gibberellin were analyzed. The results showed: Compared with the wild type, the plant height of the dwarf mutant was about 60% of that of the wild type. And other features, such as darker leaves in color, slightly sloping stem, the same stem nodes and delayed flowering time of about 3-5 days were also observed. The seedling length, the length of second leaf sheath and hypocotyl length at seedling stage were sensitive to exogenous GA3. While exogenous GA3 was sprayed at jointing stage, plant height of dwarf mutant was partially restored. The content of endogenous GAl in dwarf mutant was significantly lower than that in wild type. It can be concluded this mutant is a semi-dwarf mutant and is related to the GA metabolic pathway. This study provides new germplasm for dwarf breeding in foxtail millet.

Key words: Foxtail millet, Semi-dwarf mutant, Phenotype, GA3 sensitivity

表1

d93090和野生型拔节初期的株高、叶片数、叶长和叶宽"

材料
Meterial
株高
Plant height
叶片数
Leaf number
第4叶长
4th leaf length
第5叶长
5th leaf length
第6叶长
6th leaf length
第4叶宽
4th leaf width
第5叶宽
5th leaf width
第6叶宽
6th leaf width
WT 44.5±4.8 11.9±0.6 49.3±2.4 45.5±1.7 39.7±3.2 2.32±0.2 2.18±0.2 2.03±0.1
d93090 33.4±2.2** 11.4±0.5 46.0±2.0** 42.4±1.3** 36.4±1.8** 2.33±0.1 2.20±0.1 2.00±0.1

表2

d93090和野生型开花期的株高、叶片数、叶长和叶宽"

材料
Meterial
株高
Plant height
叶片数
Leaf number
第1叶长
1st leaf length
第2叶长
2nd leaf length
第3叶长
3rd leaf length
第2叶宽
2nd leaf width
第3叶宽
3rd leaf width
WT 175.5±4.50 13.2±0.40 39.20±2.60 41.85±2.30 44.35±2.40 2.78±0.20 2.57±0.05
d93090 107.0±1.60** 12.8±0.60 40.17±2.00 45.36±2.20** 47.30±1.40** 2.95±0.01 2.77±0.10

表3

d93090和野生型成熟期株高及穗部性状比较"

材料
Meterial
株高(cm)
Plant height
穗长(cm)
Panicle length
穗粗(cm)
Panicle diameter
穗重(g)
Panicle weight
穗粒重(g)
Grain weight per panicle
千粒重(g)
1000- seed weight
WT 176.05±4.4 18.5±1.4 2.4±0.2 20.9±3.4 18.45±3.1 1.67±0.1
d93090 107.25±1.7** 24.1±0.8** 2.3±0.2 20.2±2.2 17.20±2.0 1.67±0.1

图1

成熟期野生型和突变体d93090各茎节的节间长度"

图2

成熟期野生型和d93090对应茎节节间长度的变化"

图3

不同浓度GA3及BR、IAA诱导幼苗苗长、第二叶鞘长度及胚轴长度变化"

图4

温室内植株喷施植物激素后株高的恢复情况 “***”代表P<0.001,下同"

图5

不同生育期d93090和野生型内源GA1的含量 “**”代表P<0.01"

[1] Huang N, Courtois B, Wang G L . Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity, 1996,77(2):130-137.
doi: 10.1038/hdy.1996.117
[2] Yang X C, Hwa C M . Genetic modification of plant architecture and variety improvement in rice. Heredity, 2008,101(5):396-404.
doi: 10.1038/hdy.2008.90 pmid: 18716608
[3] Asano K, Miyao A, Hirochika H , et al. SSD1,which encodes a plant-specific novel protein,controls plant elongation by regulating cell division in rice. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 2010,86(3):265-273.
[4] Wang M L, Zhao Y, Chen F , et al. Inheritance and potentials of a mutated dwarfing gene ndf1 in Brassica napus. Plant Breeding, 2004,123(5):449-453.
doi: 10.1111/pbr.2004.123.issue-5
[5] Doebley J, Stec A, Hubbard L . The evolution of apical dominance in maize. Nature, 1997,386:485-488.
doi: 10.1038/386485a0 pmid: 9087405
[6] Mitsunaga S, Tashiro T, Yamaguchi J . Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theoretical and Applied Genetics, 1994,87(6):705-712.
doi: 10.1007/BF00222896 pmid: 24190414
[7] Kobayashi M, Sakurai A, Saka H , et al. Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiology, 1989,30:963-969.
[8] Sasaki A, Itoh H, Gomi K , et al. Accumulation of phosphorylated repressor for gibberellin signaling in art F-box mutant. Science, 2003,299:1896-1898.
doi: 10.1126/science.1081077 pmid: 12649483
[9] Ueguchi-Tanaka M, Ashikari M, Nakajima M , et al. Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellins. Nature, 2005,437:693-698.
doi: 10.1038/nature04028 pmid: 16193045
[10] 李文强 . 水稻矮秆基因d62和光叶基因gl1的图位克隆及功能研究. 杭州:浙江大学, 2010.
[11] Khush G S . Greenrevolution:the way forward. Nature Reviews Genetics, 2001,2(10):815-822.
doi: 10.1038/35093585 pmid: 11584298
[12] 赵丽娟, 马金丰, 李延东 , 等. 60Co-γ射线辐射谷子干种子诱变效应的研究. 作物杂志 , 2017(1):38-43.
[13] 田伯红 . 禾谷类作物抗倒伏性的研究方法与谷子抗倒性评价. 植物遗传资源学报, 2013,14(2):265-269.
[14] 刘秉华, 王山荭, 杨丽 , 等. 不同遗传背景矮败小麦的性状表现. 作物学报, 2001,27(2):207-211.
[15] Ellis M H, Spielmeyer W, Gale K R , et al. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002,105(6/7):1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[16] 陈亮 . 矮秆基因Rht12对小麦重要农艺性状的遗传效应及新矮秆突变体的筛选. 杨凌:西北农林科技大学, 2014.
[17] 李杏普, 兰素缺, 张业伦 , 等. Rht8、Rht10、Rht12矮杆基因对小麦营养生长和生殖生长发育的影响. 华北农学报, 2009,24(S1):50-53.
doi: 10.7668/hbnxb.2009.S1.013
[18] 唐娜 . 矮秆基因在小麦抗旱节水选育中的利用研究. 杨凌:西北农林科技大学, 2009.
[19] Li W, Wu J, Weng S , et al. Identification and characterization of dwarf 62,a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta, 2010,232(6):1383-1396.
doi: 10.1007/s00425-010-1263-1
[20] Thomas S G, Sun T . Update on gibberellin signaling. A tale of the tall and the short. Plant Physiology, 2004,135(2):668-676.
doi: 10.1104/pp.104.040279 pmid: 15208413
[21] Bennetzen J L, Schmutz J, Wang H , et al. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30(6):555-561.
doi: 10.1038/nbt.2196
[22] Zhang G Y, Liu X, Quan, Z W , et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012,30(6):549-554.
doi: 10.1038/nbt.2195
[1] 宋健,晓宁,王海岗,陈凌,王君杰,刘思辰,乔治军. SiASRs家族基因的鉴定及表达分析[J]. 作物杂志, 2019, (6): 33–42
[2] 张笛,苗兴芬,王雨婷. 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选[J]. 作物杂志, 2019, (6): 43–49
[3] 时丽冉,郝洪波,崔海英,李明哲. 遮光对谷子光合性能及快速叶绿素荧光动力学特征的影响[J]. 作物杂志, 2019, (5): 125–128
[4] 吕伟,韩俊梅,任果香,文飞,王若鹏,刘文萍. 山西芝麻种质资源遗传多样性分析[J]. 作物杂志, 2019, (5): 57–63
[5] 郭瑞锋,任月梅,杨忠,任广兵,张绶,冯婧. 谷子化学杀雄剂筛选[J]. 作物杂志, 2019, (5): 64–68
[6] 岳琳祺,施卫萍,郭佳晖,郭平毅,郭杰. 谷子角质合成基因对干旱胁迫的响应[J]. 作物杂志, 2019, (4): 183–190
[7] 公丹,潘晓威,王素华,王丽侠,程须珍. 国家食用豆产业技术体系绿豆新品种(系)联合鉴定[J]. 作物杂志, 2019, (4): 30–36
[8] 李颜方,杜艳伟,张正,王高鸿,赵根有,赵晋锋,余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化[J]. 作物杂志, 2019, (3): 73–79
[9] 刘韶光,赵夏童,宋喜娥,原向阳,董淑琦,郭美俊,郭平毅. 膜间喷施芽前除草剂对谷子安全性及对杂草防效的影响[J]. 作物杂志, 2019, (2): 173–178
[10] 杜艳伟,赵晋锋,王高鸿,李颜方,赵根有,阎晓光. 春播谷子成熟期抗倒伏性研究[J]. 作物杂志, 2019, (1): 141–145
[11] 梅日·阿黑哈提,吾买尔夏提·塔汉,艾尔肯·艾林别克,王玉祥. 新疆及周边地区糜子种质资源表型多样性分析[J]. 作物杂志, 2018, (6): 48–52
[12] 王小林,纪晓玲,张盼盼,张雄,张静. 黄土高原旱地谷子品种地上器官干物质分配与产量形成相关性分析[J]. 作物杂志, 2018, (5): 150–155
[13] 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 42–47
[14] 李志华,穆婷婷,刘鑫,李会霞,田岗. 4个谷子不育系主要农艺性状的配合力分析[J]. 作物杂志, 2018, (3): 61–67
[15] 岳茂林,薛蔚荣,张瑞栋,岳忠孝,吕瑞洲,郭鹏燕. 不同行距配置对谷子农艺性状及产量的影响[J]. 作物杂志, 2018, (2): 93–96
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王海涛,刘存敬,唐丽媛,张素君,李兴河,蔡肖,张香云,张建宏. 河北省杂交棉培育现状及发展趋势[J]. 作物杂志, 2019, (5): 1 –8 .
[2] 黄玉芳,叶优良,赵亚南,岳松华,白红波,汪洋. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响[J]. 作物杂志, 2019, (5): 104 –108 .
[3] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15 –21 .
[4] 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 1 –7 .
[5] 曹廷杰,张玉娥,胡卫国,杨剑,赵虹,王西成,周艳杰,赵群友,李会群. 黄淮南片麦区新育成品种(系)中3个矮秆基因分子标记检测及其与农艺性状的关系[J]. 作物杂志, 2019, (6): 14 –19 .
[6] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20 –26 .
[7] 王永行,单飞彪,闫文芝,杜瑞霞,杨钦方,刘春晖,白立华. 基于向日葵DUS测试的遗传多样性分析及代码分级[J]. 作物杂志, 2019, (5): 22 –27 .
[8] 师赵康,赵泽群,张远航,徐世英,王宁,王伟杰,程皓,邢国芳,冯万军. 玉米自交系幼苗生物量积累及根系形态对两种氮素水平的反应及聚类分析[J]. 作物杂志, 2019, (5): 28 –36 .
[9] 张中伟,杨海龙,付俊,谢文锦,丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019, (5): 37 –40 .
[10] 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 41 –45 .