作物杂志,2020, 第1期: 187–193 doi: 10.16035/j.issn.1001-7283.2020.01.030

• 植物保护 • 上一篇    下一篇

云南小麦品种(系)锈病和赤霉病抗性功能基因的KASP标记检测

王志伟,王志龙,乔祥梅,杨金华,程加省,程耿,于亚雄()   

  1. 云南省农业科学院粮食作物研究所/国家小麦改良中心云南分中心,650200,云南昆明
  • 收稿日期:2019-07-19 修回日期:2019-10-16 出版日期:2020-02-15 发布日期:2020-02-23
  • 通讯作者: 于亚雄 E-mail:yyx582@163.com
  • 作者简介:王志伟,主要从事小麦遗传育种研究,E-mail: wzw0903@126.com
  • 基金资助:
    国家重点研发计划“七大农作物育种”重点专项(2017YFD0100904);国家小麦现代产业技术体系昆明综合试验站(CARS-3-2-43)

Identification of Genes Associated with Rust Resistance and Fusarium Head Blight Resistance in Yunnan Wheat Cultivars (Lines) by KASP Assays

Wang Zhiwei,Wang Zhilong,Qiao Xiangmei,Yang Jinhua,Cheng Jiasheng,Cheng Geng,Yu Yaxiong()   

  1. Food Crops Research Institute, Yunnan Academy of Agricultural Sciences/National Wheat Improvement Center Yunnan Branch, Kunming 650200, Yunnan, China
  • Received:2019-07-19 Revised:2019-10-16 Online:2020-02-15 Published:2020-02-23
  • Contact: Yaxiong Yu E-mail:yyx582@163.com

摘要:

利用5个锈病成株期抗性基因的KASP标记Sr2_ger9 3p、Lr34jagger、CSTM4_67G、Lr68-2、VPM_SNP和抗赤霉病基因Fhb1的KASP标记TaHRC-KASP,对云南省育成的42个小麦品种(系)进行检测,旨在筛选出含有目标基因的优异小麦种质,为云南省持久抗病小麦新品种(系)的选育提供材料。结果表明,4个材料含兼抗型成株抗锈病基因Lr34/Yr18/Sr57,频率为9.52%;6个品种(系)含兼抗型成株抗锈病基因Lr67/Yr46/Sr55,频率为14.29%;7个材料含抗慢叶锈病基因Lr68,频率为16.67%;含兼抗型成株抗锈病基因Sr2/Yr30和成株抗叶锈基因Lr37的材料各有1个,频率均为2.38%;未检测出含抗赤霉病基因Fhb1的品种(系)。云麦69、云麦75、云麦56、宜麦1号和宜麦3号等兼有2个成株期抗锈病基因,可作为今后云南持久抗锈病育种的抗源材料。

关键词: 小麦, 基因, 锈病成株期抗性, 赤霉病抗性, KASP标记

Abstract:

In order to provide resources for genetic improvement of wheat disease resistance in Yunnan Province by selecting valuable germplasm having disease-resistant genes using KASP assays Sr2_ger93p, Lr34jagger, CSTM4_67G, Lr68 2, VPM_SNP and TaHRC KASP which associated with 5 rust adult-plant resistance genes and Fusarium head blight resistance gene Fhb1, 42 Yunnan improved wheat cultivars (lines) were screened. The results showed that four cultivars carried pleiotropic rust resistance gene Lr34/Yr18/Sr57, with a frequency of 9.52%. Six cultivars (lines) carried pleiotropic rust resistance gene Lr67/Yr46/Sr55, with a frequency of 14.29%. Seven cultivars carried the slow-rusting gene Lr68, with a frequency of 16.67%. Olny one cultivars carried pleiotropic rust resistance gene Sr2/Yr30 or rust adult-plant resistance gene Lr37, with a frequency of 2.38%, respectively. Fusarium head blight resistance gene Fhb1 was not found in 42 tested wheat cultivars (lines). Yunmai 69, Yunmai 75, Yunmai 56, Yimai 1, and Yimai 3 carried two adult-plant resistance genes which could be used as resistant materials for genetic improvement of durable rust resistance in Yunnan Province.

Key words: Wheat, Gene, Rust adult-plant resistance, Fusarium head blight resistance, KASP assay

表1

参试品种(系)名称、育成年份及系谱"

品种(系)
Cultivar (Line)
育成年份
Year of release
系谱
Pedigree
云麦39 Yunmai39 1996 云麦29/Flicker
云麦42 Yunmai42 1999 抗锈782/云麦29//YR70-PAM
云麦49 Yunmai49 2006 953-3317/3317
云麦51 Yunmai51 2007 91B-831/92B-84
云麦52 Yunmai52 2007 92R149/963-11185
云麦53 Yunmai53 2007 96B-254/96B-6
云麦54 Yunmai54 2009 云麦39/S-792
云麦56 Yunmai56 2008 932-625/822-16-7-3
云麦57 Yunmai57 2008 PFAU/MLAIV
云麦59 Yunmai59 2012 9213-194×9213-4074
云麦62 Yunmai62 2012 NG8319/2/SHA4/LTRA/3/902-41
云麦64 Yunmai64 2012 云麦39/云麦42
云麦68 Yunmai68 2014 932-625/822-16-7-3
云麦69 Yunmai69 2014 云麦42/陕623
云麦72 Yunmai72 2017 云麦39/943-676
云麦73 Yunmai73 2017 98D4-12/川麦24//957-835
云麦74 Yunmai74 2018 云麦50/云麦39
云麦75 Yunmai75 2018 R7/光头麦
云麦76 Yunmai76 2019 云麦50/云麦39
云麦77 Yunmai77 2019 98D4-12/云麦42
云麦78 Yunmai78 2019 云麦39/943-676
宜麦1号 Yimai1 2007 92-01/87-19
宜麦2号 Yimai2 2011 川麦24/96-16
宜麦3号 Yimai3 2011 96-23/96-14
靖麦12 Jingmai12 2006 7901/792364//9118
靖麦14 Jingmai14 2009 苏麦3号/庆30//8619-10
凤麦32号 Fengmai32 2002 817M-6-2-2/882-182
凤麦34号 Fengmai34 2005 9034M3-2-2/YV91-1167
凤麦35号 Fengmai35 2006 凤麦24//806-14-2-15/85-7421
凤麦36号 Fengmai36 2006 凤麦31分离单株系选而成
凤麦38号 Fengmai38 2008 91E001/8941
楚麦16号 Chumai16 2018 内麦8号/间3//重组104
云154-65 Yun154-65 2015
文D6-8 WenD6-8 2015
弥12V4-15 Mi12V4-15 2013
云122-329 Yun122-329 2013
云6-14 Yun6-14 2013
云124-6 Yun124-6 2013
云16D4-13 Yun16D4-13 2016
云16D4-12 Yun16D4-12 2016
云15D4-15 Yun15D4-15 2015
保小麦2号 Baoxiaomai2 2015

表2

锈病和赤霉病抗性基因的KASP标记引物"

表3

42个云南小麦品种(系)锈病和赤霉病抗性的KASP标记基因分型"

品种(系) Cultivar (Line) Lr34 Lr67 Lr68 Lr37 Sr2 Fhb1
云麦39 Yunmai39 Lr34+ Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦42 Yunmai42 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦49 Yunmai49 Lr34- Lr67- Lr68+ Lr37- N Fhb1-
云麦51 Yunmai51 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦52 Yunmai52 Lr34- Lr67- Lr68+ Lr37- Sr2- Fhb1-
云麦53 Yunmai53 N Lr67- Lr68- Lr37- N Fhb1-
云麦54 Yunmai54 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦56 Yunmai56 Lr34- Lr67- Lr68+ Lr37+ Sr2- Fhb1-
云麦57 Yunmai57 Lr34- Lr67- Lr68+ Lr37- Sr2- Fhb1-
云麦59 Yunmai59 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦62 Yunmai62 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦64 Yunmai64 Lr34- Lr67- Lr68- Lr37- N Fhb1-
云麦68 Yunmai68 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦69 Yunmai69 Lr34+ Lr67- Lr68+ Lr37- Sr2- Fhb1-
云麦72 Yunmai72 Lr34+ Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦73 Yunmai73 Lr34- Lr67- Lr68- Lr37- N Fhb1-
云麦74 Yunmai74 Lr34+ Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦75 Yunmai75 Lr34- Lr67+ Lr68- Lr37- Sr2 (Hope) Fhb1-
云麦76 Yunmai76 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦77 Yunmai77 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云麦78 Yunmai78 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云154-65 Yun154-65 Lr34- Lr67- Lr68- Lr37- N Fhb1-
文D6-8 WenD6-8 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
弥12V4-15 Mi12V4-15 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云122-329 Yun122-329 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云6-14 Yun6-14 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云124-6 Yun124-6 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云16D4-13 Yun16D4-13 Lr34- Lr67- Lr68- Lr37- N Fhb1-
云16D4-12 Yun16D4-12 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
云15D4-15 Yun15D4-15 Lr34- Lr67+ Lr68- Lr37- N Fhb1-
宜麦1号 Yimai1 Lr34- Lr67+ Lr68+ Lr37- N Fhb1-
宜麦2号 Yimai2 Lr34- Lr67- Lr68- Lr37- N Fhb1-
宜麦3号 Yimai3 Lr34- Lr67+ Lr68+ Lr37- Sr2- Fhb1-
靖麦12 Jingmai12 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
靖麦14 Jingmai14 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
凤麦32号 Fengmai32 Lr34- Lr67+ Lr68- Lr37- Sr2- Fhb1-
凤麦34号 Fengmai34 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
凤麦35号 Fengmai35 Lr34- Lr67+ Lr68- Lr37- Sr2- Fhb1-
凤麦36号 Fengmai36 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
凤麦38号 Fengmai38 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
楚麦16号 Chumai16 Lr34- Lr67- Lr68- Lr37- Sr2- Fhb1-
保小麦2号 Baoxiaomai2 Lr34- Lr67- Lr68- Lr37- N Fhb1-

图1

42个云南小麦品种(系)中锈病和赤霉病抗性功能基因的分布频率"

[1] 李振歧, 曾士迈 . 中国小麦锈病. 北京: 中国农业出版社, 2002: 2-3.
[2] 程顺和, 张勇, 别同德 , 等. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012,28(5):938-942.
[3] Wellings C R, McIntosh R A, Hussain M . A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum). Plant Breeding, 1988,100(2):88-96.
[4] Conner R L, Kuzyk A D, Su H . Impact of powdery mildew on the yield of soft white spring wheat cultivars. Canadian Journal of Plant Science, 2003,83(4):725-728.
[5] 何中虎, 兰彩霞, 陈新民 , 等. 小麦条锈病和白粉病成株抗性研究进展和展望. 中国农业科学, 2011,44(11):2193-2215.
[6] 金艳, 刘付锁, 朱统泉 , 等. 河南省小麦赤霉病的发生情况分析与防治对策. 河南科技学院学报, 2016,44(6):1-4.
[7] Chen X M, Line R f . Gene action in wheat cultivars for durable,high-temperature,adult-plant resistance and interactions with race-specific,seedling resistance to stripe rust caused by Puccinia striiformis. Phytopathology, 1995,85(5):567-572.
[8] Gustafson G D, Shaner G . Influence of plant age on the expression of slow-mildewing resistance in wheat (Triticum aestivum). Phytopathology, 1982,72:746-749.
[9] 陈时盛 . 小麦抗锈病基因的遗传分析及其分子作图. 成都:四川农业大学, 2015.
[10] 金夏红, 冯国华, 刘东涛 , 等. 小麦抗叶锈病遗传研究进展. 麦类作物学报, 2017,37(4):504-512.
[11] Li Z F, Lan C X, He Z H , et al. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Science, 2014,54(5):1907-1925.
[12] Crossa J, Burgueno, Dreisigacker S , et al. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 2007,177(3):1889-1913.
[13] Spielmeyer W, McIntosh R A, Kolmer J ,et al. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theoretical and Applied Genetics, 2005,111(4):731-735.
[14] William M, Singh R P, Huerta-Espino J , et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 2003,93(2):153-159.
[15] Herrera-Foessel S A, Lagudah E S, Huerta-Espino J , et al. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics, 2011,122(1):239-249.
[16] Herrera-Foessel S A, Singh R P, Huerta-Espino J , et al. Lr68:A new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 2012,124(8):1475-1486.
[17] Bariana H S, McIntosh R A . Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromsome 2A. Genome, 1993,36:476-482.
[18] Xue S L, Kolmer J A, Wang S W , et al. Mapping of Leaf rust resistance genes and molecular characterization of the 2NS/2AS translocation in the wheat cultivar Jagger. G3:Genes,Genomes, Genetics, 2018,8(6):2059-2065.
[19] 张爱民, 阳文龙, 李欣 , 等. 小麦抗赤霉病研究现状与展望. 遗传, 2018,40(10):858-873.
[20] 刘易科, 佟汉文, 朱展望 , 等. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016,36(1):51-57.
[21] Xie G Q, Zhang M C, Chakraborty S , et al. The effect of 3BS locus of Sumai 3 on Fusarium head blight resistance in Australian wheats. Australian Journal of Experimental Agriculture, 2007,47(5):603-607.
[22] Bernardo A, Bai G H, Yu J B , et al. Registration of near-isogenic winter wheat germplasm contrasting in Fhb1 for Fusarium head blight resistance. Journal of Plant Registrations, 2013,8(1):106-108.
[23] Randhawa H S, Asif M, Pozniak C , et al. Application of molecular markers to wheat breeding in Canada. Plant Breeding, 2013,132(5):458-471.
[24] Semagn K, Babu R, Hearne S , et al. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP):overview of the technology and its application in crop improvement. Molecular Breeding, 2014,33(1):1-14.
[25] Rasheed A, Wen W E, Gao F M , et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016,129(10):1843-1860.
[26] Khalid M, Afzal F, Gul A , et al. Molecular characterization of 87 functional genes in wheat diversity panel and their association with phenotypes under well-watered and water-limited conditions. Frontiers in Plant Science, 2019,10:717-732.
[27] Su Z Q, Jin S J, Zhang D D , et al. Development and validation of diagnostic markers for Fhb1 region,a major QTL for Fusarium head blight resistance in wheat. Theoretical and Applied Genetics, 2018,131(11):2371-2380.
[28] Rogers S O, Bendich A J . Extraction of DNA from milligram amounts of fresh,herbarium and mummified plant tissues. Plant Molecular Biology, 1985,5(2):69-76.
[29] Rasheed A, Jin H, Xiao Y G , et al. Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. Journal of Cereal Science, 2019,85:305-309.
[30] 邹景伟, 贾万利, 李立鑫 , 等. 120份小麦品种(系)重要性状功能基因的KASP标记检测. 分子植物育种, 2019,17(12):3945-3959.
[31] 张维军, 赵俊杰, 何进尚 , 等. 宁夏小麦种质资源穗发芽抗性鉴定及相关分子标记的有效性评价. 麦类作物学报, 2019,39(5):532-539.
[32] 杨子博, 顾正中, 周羊梅 , 等. 江苏淮北地区小麦品种资源籽粒硬度基因等位变异的KASP检测. 麦类作物学报, 2017,37(2):153-161.
[33] 张宏军, 宿振起, 柏贵华 , 等. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44(4):505-511.
[34] Moore J W, Herrera-Foessel S, Lan C X , et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015,47(12):1494-1498.
[1] 赵训超,徐晶宇,盖胜男,魏玉磊,许晓萱,丁冬,刘梦,张今杰,邵文静. 高粱硬脂酰-ACP脱氢酶基因(SbSAD)家族鉴定及不同发育阶段表达分析[J]. 作物杂志, 2020, (2): 20–27
[2] 王贺正,沈思涵,张冬霞,王改净,郑金枝,毕彪,王文杰. 水杨酸对水分胁迫下小麦幼苗生理生化特性的影响[J]. 作物杂志, 2020, (2): 168–171
[3] 张晓玉,张亚玲,靳学慧,闫天雨,赵泽. 稻瘟病菌杂交后代致病性遗传分析[J]. 作物杂志, 2020, (2): 182–187
[4] 陈天鑫,王艳杰,张燕,常旭虹,陶志强,王德梅,杨玉双,朱英杰,刘阿康,石书兵,赵广才. 不同施氮量对冬小麦光合生理指标及产量的影响[J]. 作物杂志, 2020, (2): 88–96
[5] 张博,高甜甜,程宏波,李瑞,柴雨葳,李亚伟,柴守玺. 覆盖对旱地冬小麦植株和旗叶水分含量及产量的影响[J]. 作物杂志, 2020, (2): 97–104
[6] 田孟祥,宫彦龙,张时龙,何友勋,雷月,余本勋,余莉,李佳丽,张大双,叶永印. 水稻苗期耐低温基因COLD1新功能标记的设计与验证[J]. 作物杂志, 2020, (1): 55–60
[7] 马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020, (1): 1–8
[8] 黄寅玲,雷忠顺,郑涛,索新霞. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响[J]. 作物杂志, 2020, (1): 130–135
[9] 张永强,齐晓晓,张璐,董慧云,陈传信,赛力汗·赛,薛丽华,陈兴武,雷钧杰. 氮肥运筹对滴灌冬小麦叶片光合特性及产量的影响[J]. 作物杂志, 2020, (1): 141–145
[10] 杨文彪,张慧芋,李莹,祁泽伟,刘凯凯,高志强,孙敏,薛建福. 山西省冬小麦生产潜力时空分布与气象因子分析[J]. 作物杂志, 2020, (1): 161–167
[11] 曹廷杰,张玉娥,胡卫国,杨剑,赵虹,王西成,周艳杰,赵群友,李会群. 黄淮南片麦区新育成品种(系)中3个矮秆基因分子标记检测及其与农艺性状的关系[J]. 作物杂志, 2019, (6): 14–19
[12] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20–26
[13] 宋健,晓宁,王海岗,陈凌,王君杰,刘思辰,乔治军. SiASRs家族基因的鉴定及表达分析[J]. 作物杂志, 2019, (6): 33–42
[14] 郭明明,樊继伟,王康君,孙中伟,张广旭,陈凤,李强,李筠,章跃树,赵广才. 潮盐土条件下不同小麦品种(系)子粒品质差异分析[J]. 作物杂志, 2019, (6): 134–139
[15] 王丽娜,常旭虹,王德梅,陶志强,王艳杰,杨玉双,赵广才. 不同土壤条件下追施硼肥对小麦产量和品质的影响[J]. 作物杂志, 2019, (6): 94–98
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[3] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48 –52 .
[4] 李少昆,张万旭,王克如,俞万兵,陈永生,韩冬生,杨小霞,刘朝巍,张国强,王浥州,柳枫贺,陈江鲁,杨京京,谢瑞芝,侯鹏,明博. 北疆玉米密植高产宜粒收品种筛选[J]. 作物杂志, 2018, (4): 62 –68 .
[5] 陈亮妹,李江遐,胡兆云,叶文玲,吴文革,马友华. 重金属低积累作物在农田修复中的研究与应用[J]. 作物杂志, 2018, (1): 16 –24 .
[6] 赵璐,杨治伟,部丽群,田玲,苏梅,田蕾,张银霞,杨淑琴,李培富. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价[J]. 作物杂志, 2018, (1): 25 –34 .
[7] 郜战宁,冯辉,薛正刚,杨永乾,王树杰,潘正茂. 28个大麦品种(系)主要农艺性状分析[J]. 作物杂志, 2018, (1): 77 –82 .
[8] 马延华, 王庆祥. 玉米茎秆性状与抗倒伏关系研究进展[J]. 作物杂志, 2012, (2): 10 –15 .
[9] 甘吉生, 朱遐龄, 王雁. 冬小麦─夏玉米肥水合理运筹的技术与效益[J]. 作物杂志, 1995, (3): 23 –25 .
[10] 马剑如, 杨富来. 小麦根际联合固氮菌剂应用效果分析[J]. 作物杂志, 1990, (2): 9 –10 .