作物杂志,2021, 第2期: 173–177 doi: 10.16035/j.issn.1001-7283.2021.02.025

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

腐植酸对干旱胁迫下谷子幼苗叶片抗坏血酸-谷胱甘肽循环的影响

申洁1(), 王玉国2, 郭平毅2(), 原向阳2   

  1. 1长治学院生物科学与技术系,046011,山西长治
    2山西农业大学农学院,030801,山西太谷
  • 收稿日期:2020-11-06 修回日期:2021-02-22 出版日期:2021-04-15 发布日期:2021-04-16
  • 通讯作者: 郭平毅
  • 作者简介:申洁,主要从事作物化学调控及逆境生理研究,E-mail: shijie216516@163.com
  • 基金资助:
    “十三五”国家谷子高粱产业技术体系项目(CARS-06-13.5-A28);长治学院博士科研启动费(020-XN0329)

Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress

Shen Jie1(), Wang Yuguo2, Guo Pingyi2(), Yuan Xiangyang2   

  1. 1Faculty of Biology Science and Technology, Changzhi University, Changzhi 046011, Shanxi, China
    2College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2020-11-06 Revised:2021-02-22 Online:2021-04-15 Published:2021-04-16
  • Contact: Guo Pingyi

摘要:

为探讨腐植酸(HA)对干旱胁迫下谷子抗氧化系统的调节机制,以晋谷21号和张杂10号为材料,采用浸种法研究了不同浓度腐植酸(0、50、100、200、300mg/L)对干旱胁迫下谷子幼苗叶片抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响。结果显示,100和200mg/L腐植酸处理显著提高了干旱胁迫下谷子幼苗叶片抗坏血酸过氧化物酶(APX)和脱氢抗坏血酸还原酶(DHAR)的活性,促进了抗氧化物质AsA和GSH的再生,使AsA/DHA和GSH/GSSH值增加,有效缓解了活性氧的积累。研究表明,腐植酸可通过提高AsA-GSH循环相关酶活性及抗氧化物质含量,缓解干旱胁迫对谷子幼苗造成的氧化损伤,从而提高谷子的抗旱性。

关键词: 腐植酸, 谷子, 干旱胁迫, AsA-GSH

Abstract:

To explore the regulation mechanism of humic acid on the antioxidant system of foxtail millet under drought stress, using Jingu 21 and Zhangza 10 as materials, the seed soaking method was used to study different concentrations of humic acid (0, 50, 100, 200, 300mg/L) on the ascorbate-glutathione (AsA-GSH) cycle of millet seedling leaves under drought stress. The results showed that 100 and 200mg/L humic acid treatment significantly increased the ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) activities of millet seedling leaves under drought stress, promoted the regeneration of AsA and GSH, increased the ratios of AsA/DHA and GSH/GSSH, and effectively alleviated the accumulation of reactive oxygen of millet seedlings. Therefore, humic acid could alleviate the oxidative damage of drought stress to the seedlings of foxtail millet by increasing the activity of metabolizing enzyme and the content of antioxidants in the AsA-GSH cycle, thus improved the drought resistance of foxtail millet.

Key words: Humic acid, Foxtail millet, Drought stress, AsA-GSH

图1

腐植酸对干旱胁迫下谷子幼苗叶片APX、GR、MDHAR和DHAR活性的影响 不同小写字母表示差异显著(P<0.05),下同

表1

腐植酸对干旱胁迫下谷子幼苗抗坏血酸含量的影响

品种Cultivar 处理Treatment 还原型抗坏血酸AsA 氧化型抗坏血酸DHA 总抗坏血酸Total AsA 还原型/氧化型抗坏血酸AsA/DHA
晋谷21号 CK 0.8961±0.0232d 1.7470±0.0179a 2.6431±0.0069d 0.5133±0.0183d
Jingu 21 T0 1.8989±0.0176c 1.3982±0.0404c 3.2971±0.0256c 1.3610±0.0508b
T1 1.9366±0.0192bc 1.5511±0.0308b 3.4877±0.0119b 1.2500±0.0371b
T2 1.9942±0.0296b 1.8407±0.0501a 3.8349±0.0205a 1.0858±0.0455c
T3 2.1807±0.0216a 1.2403±0.0403d 3.4210±0.0374b 1.7624±0.0683a
T4 1.9133±0.0317c 1.4234±0.0259c 3.3366±0.0235c 1.3457±0.0437b
张杂10号 CK 0.8615±0.0058d 1.3134±0.0326cd 2.1749±0.0324d 0.6568±0.0173f
Zhangza 10 T0 1.7480±0.0055c 1.3980±0.0257b 3.1460±0.0216c 1.2513±0.0259d
T1 1.7769±0.0097c 1.3259±0.0238bcd 3.1028±0.0141c 1.3412±0.0316c
T2 2.3249±0.0292a 1.3644±0.0201bc 3.6893±0.0107a 1.7053±0.0456a
T3 1.8383±0.0107b 1.7706±0.0136a 3.6089±0.0088b 1.0385±0.0131e
T4 1.8798±0.0087b 1.2697±0.0149d 3.1495±0.0076c 1.4810±0.0236b

表2

腐植酸对干旱胁迫下谷子幼苗谷胱甘肽含量的影响

品种Cultivar 处理Treatment 还原型谷胱甘肽GSH 氧化型谷胱甘肽GSSG 总谷胱甘肽Total GSH 还原型/氧化型谷胱甘肽GSH/GSSG
晋谷21号 CK 5.2814±0.0086c 0.6270±0.0060b 5.9084±0.0110c 8.4242±0.0802a
Jingu 21 T0 5.4825±0.0153b 0.7391±0.0074a 6.2216±0.0093b 7.4191±0.0928b
T1 5.4853±0.0088b 0.7444±0.0032a 6.2297±0.0101b 7.3693±0.0314b
T2 5.5566±0.0120a 0.7361±0.0075a 6.2927±0.0110a 7.5510±0.0863b
T3 5.5100±0.0087b 0.7266±0.0116a 6.2366±0.0058b 7.5872±0.1336b
T4 5.4762±0.0081b 0.7483±0.0187a 6.2245±0.0106b 7.3274±0.1930b
张杂10号 CK 5.2847±0.0118c 0.6028±0.0051c 5.8875±0.0079d 8.7686±0.0924a
Zhangza 10 T0 5.4956±0.0156b 0.7460±0.0156a 6.2416±0.0072c 7.3743±0.1735c
T1 5.5137±0.0075b 0.7356±0.0147a 6.2493±0.0099c 7.5017±0.1575c
T2 5.5683±0.0101a 0.7381±0.0023a 6.3064±0.0087a 7.5445±0.0343c
T3 5.5716±0.0081a 0.7053±0.0054b 6.2769±0.0102b 7.9010±0.0611b
T4 5.4970±0.0078b 0.7585±0.0040a 6.2554±0.0060bc 7.2480±0.0450c
[1] 李江, 汤红玲, 陈惠萍. 外源一氧化碳对干旱胁迫下水稻幼苗抗氧化系统的影响. 西北植物学报, 2010,30(2):330-335.
[2] 徐丽霞, 仪慧兰, 郭二虎, 等. 干旱胁迫对谷子抽穗期生理生化和产量的影响. 山西大学学报(自然科学版), 2016,39(4):672-678.
[3] 王璞. 农作物概论. 北京: 中国农业大学出版社, 2004.
[4] Ajithkumar I P, Panneerselvam R. ROS scavenging system,osmotic maintenance,pigment and growth status of Panicum sumatrense Roth. under drought stress. Cell Biochemistry and Biophysics, 2014,68(3):587-595.
[5] Canellas L P, Dantas D J, Aguiar N O, et al. Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annals of Applied Biology, 2011,159(2):202-211.
[6] Ahmed A H H, Darwish E, Hamoda S A F, et al. Effect of putrescine and humic acid on growth,yield and chemical compositionof cotton plants grown under saline soil conditions. American-Eurasian Journal Agricultural Environmental Science, 2013,13(4):479-497.
[7] 马建军, 邹德文, 吴贺平, 等. 腐植酸钠对镉胁迫小麦幼苗生物效应的研究. 中国生态农业学报, 2005,13(2):91-93.
[8] 郭伟, 王庆祥. 腐植酸浸种对盐碱胁迫下小麦幼苗抗氧化系统的影响. 应用生态学报, 2011,22(10):2539-2545.
[9] Berbara R L L, García A C. Humic substances and plant defense metabolism//Ahmad P,Wani M R. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. New York:Springer, 2014: 297-319.
[10] 张小冰, 邢勇, 郭乐, 等. 腐植酸钾浸种对干旱胁迫下玉米幼苗保护酶活性及MDA含量的影响. 中国农学通报, 2011,27(7): 69-72.
[11] 李英浩, 刘景辉, 赵宝平, 等. 干旱胁迫下腐植酸对燕麦叶绿素荧光特性的调控效应. 灌溉排水学报, 2020,39(4):26-32.
[12] Shen J, Guo M J, Wang Y G, et al. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signaling & Behavior, 2020,15(8):1-13.
[13] Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment, 2010,33(4):453-467.
[14] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascrobate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981,22:867-880.
[15] 金梦阳, 文亮. 60Co γ射线辐照对续随子保护酶活性的影响. 核农学报, 2008,22(5):569-572.
[16] Hoque M A, Banu M N A, Okuma E, et al. Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities,and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 2007,164(11):1457-1468.
[17] Doulis A G, Debian N, Foyer K S H. Differential localization of antioxidants in maize leaves. Plant Physiology, 1997,114(3):1031-1037.
[18] Jiang M Y, Zhang J H. Effect of abscisic acid on active oxygen species,antioxidative defence systemand oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 2001,42(11):1265-1273.
[19] Nagalakshmi N, Prasad M N V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Science, 2001,160:291-299.
[20] Quan L J, Zhang B, Shi W W, et al. Hydrogen peroxide in plants:A versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 2008,50(1):2-18.
[21] Sinhababu A, Kar R K. Response of four fuel-wood yielding seedlings to water stress. Indian Journal of Plant Physiology, 2002,7(1):88-91.
[22] 刘建新, 欧晓彬, 王金成, 等. 外源NO对镧胁迫下燕麦幼苗叶片抗坏血酸-谷胱甘肽循环的影响. 麦类作物学报, 2018,38(4):478-486.
[23] Aguiar N O, Medici L O, Olivares F L, et al. Metabolic profile and antioxidant responses during drought stress recovery in sugarcane treated with humic acids and endophytic diazotrophic bacteria. Annals of Applied Biology, 2016,168(2):203-213.
[24] 董守坤, 马玉玲, 李爽, 等. 干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响. 东北农业大学学报, 2018,49(1):10-18.
[25] Wang C Q, Xu H J, Liu T. Effect of selenium on ascorbate-glutathione metabolism during PEG-induced water deficit in Trifolium repens L. Journal of Plant Growth Regulation, 2011,30(4):436-444.
[26] Foyer C H, Noctor G. Ascorbate and glutathione:the heart of the redox hub. Plant Physiology, 2011,155(1):2-18.
[27] 曹逼力. 硅缓解番茄(Solanum Lycopersicum L.)干旱胁迫的机理. 泰安:山东农业大学, 2015.
[28] 周艳, 刘慧英, 邓嘉欣, 等. GSH/GSSG对盐胁迫下番茄幼苗谷胱甘肽化修饰和抗氧化系统的影响. 分子植物育种. [2020-11-03]. https://kns.cnki.net/kcms/detail/46.1068.S.20200528.0900.002.html.
[29] 郑清岭, 杨忠仁, 张晓艳, 等. 干旱胁迫对沙芥和斧形沙芥抗坏血酸含量及其代谢相关酶的影响. 植物生理学报, 2018,54(12):124-133.
[30] 郑春芳, 刘伟成, 魏龙, 等. 外施褪黑素对低温胁迫下红树植物秋茄光合作用和抗坏血酸-谷胱甘肽循环的调控. 植物生理学报, 2019,55(8):1211-1221.
[31] Li J, Arkorful E, Cheng S, et al. Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2018,238:356-362.
[32] Panda P, Nath S, Chanu T T, et al. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiologiae Plantarum, 2011,33(5):1737-1747.
[1] 董好胜, 王琦, 闫鹏, 许艳丽, 张薇, 卢霖, 董志强. 乙矮合剂对谷子茎秆抗倒伏能力及产量的影响[J]. 作物杂志, 2023, (6): 181–189
[2] 赵丽洁, 赵海燕, 韩根兰, 王江, 聂萌恩, 杜慧玲, 原向阳, 董淑琦. 氮肥配施有机肥对谷子品质的影响[J]. 作物杂志, 2023, (6): 224–232
[3] 申甜雨, 王媛, 董二伟, 王劲松, 刘秋霞, 焦晓燕. 氮和延迟收获对谷子产量及小米品质的影响[J]. 作物杂志, 2023, (6): 233–242
[4] 朱文娟, 任月梅, 杨忠, 郭瑞锋, 张绶, 任广兵. 谷子土壤微生物群落结构及功能预测分析[J]. 作物杂志, 2023, (5): 170–178
[5] 依兵, 刘金刚, 宋殿秀, 王德兴, 赵明珠, 刘晓宏, 孙恩玉, 崔良基. 干旱地区向日葵与谷子间作的土地生产力及种间竞争力的研究[J]. 作物杂志, 2023, (5): 219–223
[6] 赵海燕, 赵丽洁, 韩根兰, 王江, 王子建, 聂萌恩, 杜慧玲, 原向阳, 董淑琦. 氮锌配施对谷子根系形态及锌含量的影响[J]. 作物杂志, 2023, (4): 152–158
[7] 姜珊, 刘佳, 曹亮, 任春元, 金喜军, 张玉先. 外源褪黑素对干旱胁迫下红小豆幼苗生长和产量的影响[J]. 作物杂志, 2023, (4): 202–209
[8] 赵云, 冯国郡, 胡相伟, 吾买尔江·库尔班, 李鹏兵, 李翠梅, 阿克博塔·木合亚提. 新疆喀什地区适栽抗除草剂复播谷子品种筛选初报[J]. 作物杂志, 2023, (3): 126–133
[9] 单嘉烨, 张学伟, 鄢敏, 杨建, 王飞, 何佶弦, 胡刚, 王宇辰, 景延秋, 雷强. 喷施稀土微肥对干旱胁迫下烤烟生长及生理特性的影响[J]. 作物杂志, 2023, (2): 100–105
[10] 贺水玲, 赵霞, 吴明琦, 王东胜. 外源NO和H2S对谷子种子萌发的影响[J]. 作物杂志, 2023, (2): 138–144
[11] 管娇, 樊兴荣, 邹红旭, 杨嘉玲, 王丽华, 翁玉仙, 保志娟. 大麻二酚对Cd和Cr胁迫下烟草生长的影响[J]. 作物杂志, 2023, (2): 163–170
[12] 马继钰, 王爽, 李云, 郭振清, 王健, 林小虎, 韩玉翠. 种植密度对谷子农艺性状及产量的影响[J]. 作物杂志, 2023, (2): 222–228
[13] 王慧敏, 李明昊, 李云, 李菡, 王爽, 林小虎, 韩玉翠. 谷子品种(系)萌发期耐盐碱性鉴定及评价[J]. 作物杂志, 2023, (2): 57–66
[14] 边淑惠, 邢国芳, 梁昕, 张舒玮, 王佳宁, 叶昊雨. 不同形态硒及用量对幼苗期谷子生长与生理的影响[J]. 作物杂志, 2023, (1): 152–157
[15] 张丽霞, 郭晓彦, 史鹏飞, 聂良鹏, 凌敬伟, 申培林, 丁丽, 张琳, 吕玉虎, 潘兹亮. 旺长期干旱胁迫对红麻生长发育、产量及效益的影响[J]. 作物杂志, 2023, (1): 184–189
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!