作物杂志,2021, 第4期: 206–211 doi: 10.16035/j.issn.1001-7283.2021.04.032

• 种子科技 • 上一篇    下一篇

富氢水对干旱胁迫下大麦种子萌发及幼苗生物量分配的影响

宋瑞娇(), 冯彩军, 齐军仓()   

  1. 石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室,832003,新疆石河子
  • 收稿日期:2020-08-14 修回日期:2020-12-24 出版日期:2021-08-15 发布日期:2021-08-13
  • 通讯作者: 齐军仓
  • 作者简介:宋瑞娇,研究方向为种子生理学,E-mail:435991524@qq.com
  • 基金资助:
    现代农业产业技术体系建设专项(CARS-05-22B)

Effects of Hydrogen-Rich Water on Barley Seed Germination and Barley Seedling Biomass Distribution under Drought Stress

Song Ruijiao(), Feng Caijun, Qi Juncang()   

  1. Agricultural College of Shihezi University/The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
  • Received:2020-08-14 Revised:2020-12-24 Online:2021-08-15 Published:2021-08-13
  • Contact: Qi Juncang

摘要:

为探讨富氢水对干旱胁迫下大麦种子萌发期抗旱性与幼苗生物量分配的影响,以大麦品种“新啤6号”为试材,采用20%聚乙二醇(PEG)-6000模拟干旱胁迫,比较不同浓度富氢水浸种处理后大麦种子的发芽率和幼苗根冠比等16个指标的差异。结果表明,适宜浓度的富氢水处理能显著提高干旱胁迫下大麦种子的发芽率、干物质转移量、转移率及转化效率,并减少呼吸消耗干物质量,还可以降低干旱胁迫下大麦幼苗根冠比,增加幼苗根和芽的干重,促进幼苗可溶性糖、可溶性蛋白及叶绿素累积。由此可知,一定浓度的富氢水能通过调控种子干物质转运的途径提升干旱胁迫下大麦种子的萌发率,并可通过调节可溶性糖、可溶性蛋白和叶绿素含量降低干旱胁迫对大麦幼苗根和芽生物量分配的不利影响。

关键词: 富氢水, 干旱胁迫, 大麦, 萌发

Abstract:

To investigate the effects of hydrogen-rich water (HRW) on drought resistance in germination period and seedling biomass distribution under drought stress, barley variety Xinpi 6 was used as material, which cultured in 20% polyethylene glycol-6000 (PEG). The 16 indexes were compared in different concentrations of HRW, such as germination rate and seedling root-shoot ratio. The results showed that the suitable concentration of HRW treatment could significantly increase the germination rate, dry matter transfer amount, transfer rate, and conversion efficiency; reduced respiratory consumption of dry matter and root-shoot ratio; increased the roots and buds’ dry weight; promoted the accumulation of soluble sugar, soluble protein, and chlorophyll in barley seedlings. It could be concluded that suitable concentration of HRW could increase the germination rate of barley seeds under drought stress by regulating the transport of dry matter, and reduce the adverse effects of drought stress on the proportion of root and bud biomass of seedlings by regulating the contents of soluble sugar, soluble protein, and chlorophyll.

Key words: Hydrogen-rich water, Drought stress, Barley, Germination

图1

干旱胁迫下不同浓度富氢水浸种后大麦种子的发芽率 不同小写字母表示处理间差异显著(P<0.05),不同大写字母表示处理间差异极显著(P<0.01),下同

表1

不同浓度富氢水浸种对干旱胁迫下大麦种子干物质转运的影响

富氢水浓度
HRW
concentration (%)
干物质转移量
Dry matter transfer amount (mg)
干物质转移率
Dry matter transfer
rate (%)
呼吸消耗干物质量
Respiratory consumption
of dry matter (mg)
干物质转化效率
Dry matter conversion
efficiency (%)
0(CK) 426.39±20.15bA 67.72±3.20bA 313.79±22.98aA 26.59±1.98bBC
25 454.13±8.20abA 72.12±1.31abA 302.89±12.83bA 33.36±1.64aB
50 465.49±19.97abA 73.93±3.17abA 303.79±20.49bA 34.87±1.58aA
75 474.26±2.20aA 75.32±0.35aA 310.89±8.68bA 34.45±1.61aB
100 482.59±10.51aA 76.64±1.67aA 362.93±15.91aA 24.87±1.73aC

表2

不同浓度富氢水浸种对干旱胁迫下大麦幼苗根芽生物量分配的影响

富氢水浓度
HRW concentration (%)
幼苗干重
Seedling dry weight (mg)
根干重
Root dry weight (mg)
芽干重
Bud dry weight (mg)
根冠比
Root-shoot ratio
0(CK) 112.60±3.10bB 72.10±2.48cC 40.50±2.35cB 1.79±0.14abAB
25 151.23±4.72aA 82.70±4.69bcBC 68.53±0.68aA 1.21±0.07cB
50 161.70±1.76aA 91.97±2.40bAB 69.73±2.11aA 1.32±0.07bcAB
75 163.37±7.15aA 105.87±6.95aAB 57.50±1.81bA 1.85±0.13abAB
100 119.67±5.82bB 79.80±0.81bcBC 39.87±6.54cB 2.10±0.31aA

图2

干旱胁迫下不同浓度富氢水浸种对大麦幼苗根和芽可溶性糖含量的影响

图3

干旱胁迫下不同浓度富氢水浸种对大麦幼苗根和芽可溶性蛋白含量的影响

表3

干旱胁迫下不同浓度富氢水浸种对大麦叶绿素a、叶绿素b及叶绿素总含量的影响

富氢水浓度
HRW concentration (%)
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
叶绿素总含量
Total chlorophyll content
0(CK) 780.07±23.21dC 249.68±21.52abA 1029.76±33.64cD
25 1173.08±63.89aA 259.51±15.37aA 1432.59±78.98aA
50 1034.44±34.40bB 218.03±7.17bA 1252.48±41.51bB
75 968.96±8.45bB 214.88±2.79bA 1183.84±9.79bBC
100 850.46±33.16cC 219.22±34.81bA 1069.69±67.54cCD
[1] 刘慧, 薛凤蕊. 中国大麦贸易现状及发展趋势. 农业展望, 2015,11(8):66-69.
[2] 周曙东, 周文魁, 林光华, 等. 未来气候变化对我国粮食安全的影响. 南京农业大学学报(社会科学版), 2013,13(1):56-65.
[3] Tan L Y, Chen S X, Wang T, et al. Proteomic insights into seed germination in response to environmental factors. Proteomics, 2013,13(12/13):1850-1870.
[4] 李淑梅, 董丽平, 王付娟. PEG模拟干旱胁迫对大麦种子萌发及生理特性的响应. 种子, 2016,35(10):99-101.
[5] 包奇军, 潘永东, 张华瑜, 等. 旱胁迫对啤酒大麦产量及酿造品质的影响. 干旱地区农业研究, 2016,34(5):27-34.
[6] 宋瑞娇, 齐军仓. 氢气的植物学作用研究进展. 植物生理学报, 2020,56(5):913-920.
[7] Xie Y, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiology, 2014,165(2):759-773.
[8] Chen Y, Wang M, Hu L, et al. Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress. Frontiers in Plant Science, 2017,8:128.
[9] Felix K, Su J C, Lu R F, et al. Hydrogen-induced tolerance against osmotic stress in alfalfa seedlings involves ABA signaling. Plant Soil, 2019,445:409-423.
[10] Tomoki S, Ryosuke K, Bunpei S. A convenient method for determining the concentration of hydrogen in water:use of methylene blue with colloidal platinum. Medical Gas Research, 2012,2(1):1-6.
[11] Soltani A, Gholipoor A, Zeinali E. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany, 2006,55:195-200.
[12] 李合生, 孙群, 赵世杰. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 195-197.
[13] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72:248-254.
[14] Arnon D I. Copper enzymes in isolated chlorplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949,24:1-15.
[15] Xu S, Zhu S, Jiang Y, et al. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant and Soil, 2013,370:47-57.
[16] 田婧芸, 张慧洁, 陕嘉楠, 等. 富氢水处理对铜胁迫下小麦幼苗生长及其细胞结构的影响. 河南农业大学学报, 2018,52(2):193-198.
[17] 施成晓, 陈婷, 王昌江, 等. 干旱胁迫对不同抗旱性小麦种子萌发及幼苗根芽生物量分配的影响. 麦类作物学报, 2016,36(4):483-490.
[18] 贺海波, 李彦. 干旱、盐胁迫条件下两种盐生植物生物量分配对策的研究. 干旱区研究, 2008,25(2):242-247.
[19] 代小冬, 徐心志, 朱灿灿, 等. 谷子苗期对不同程度干旱胁迫的响应及抗旱性评价. 作物杂志, 2016(1):140-143.
[20] 姜颖, 左官强, 王晓楠, 等. 烯效唑浸种对干旱胁迫下工业大麻幼苗形态、渗透调节物质及内源激素的影响. 干旱地区农业研究, 2020,38(3):74-80.
[21] 侯俊峰, 黄鑫, 侯阁阁, 等. 非结构性碳水化合物积累与小麦植株抗旱性及产量的关系. 西北农业学报, 2017,26(11):1590-1597.
[22] Wang Y, Duan X L, Xu S, et al. Linking hydrogen-mediated boron toxicity tolerance with improvement of root elongation,water status and reactive oxygen species balance:a case study for rice. Annals of Botany, 2016,118(7):1279-1291.
[23] 顾正中, 周羊梅, 杨子博, 等. 干旱胁迫下淮麦33等不同小麦品种幼苗生理响应的研究. 西南农业学报, 2017,30(1):67-71.
[24] 刘军, 齐广平, 康燕霞, 等. 不同灌溉处理下紫花苜蓿光合特性、叶绿素荧光参数及生物量的变化. 草地学报, 2019,27(6):1569-1576.
[1] 闫锋, 李清泉, 董扬, 季生栋, 韩业辉, 于运凯, 王立达, 赵锁. 60Co-γ辐射对糜子种子萌发及幼苗生长的影响[J]. 作物杂志, 2021, (4): 202–205
[2] 史雅涵, 杜天庆, 翟红梅, 杨舒添, 龚芮, 李宇航, 路博宇, 崔福柱, 高志强. 硒对芸豆种子萌发、生理特性及营养品质的影响[J]. 作物杂志, 2021, (3): 210–216
[3] 申洁, 王玉国, 郭平毅, 原向阳. 腐植酸对干旱胁迫下谷子幼苗叶片抗坏血酸-谷胱甘肽循环的影响[J]. 作物杂志, 2021, (2): 173–177
[4] 韩多红, 王恩军, 张勇, 王红霞, 王艳, 王富. 干旱胁迫下外源亚精胺、甜菜碱对菘蓝种子萌发和幼苗生理特性的影响[J]. 作物杂志, 2021, (1): 118–123
[5] 邓婉月, 冷秋彦, 杨在君, 余燕, 吴一超. 干旱胁迫对盆栽“川丹参1号”生理指标及主要活性成分含量的影响[J]. 作物杂志, 2021, (1): 74–81
[6] 杨娟, 姜阳明, 周芳, 张军, 罗海登, 田山君. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021, (1): 82–89
[7] 周元成, 陈爱萍, 曹永立, 王镇, 赵玉坤, 侯东红, 解丽丽. 大麦籽粒灌浆期β-淀粉酶积累动态与气象因子关系研究[J]. 作物杂志, 2020, (6): 123–127
[8] 付学鹏, 沈童飞, 孙晓波, 刘晓涵, 杨晓杰. 链霉菌株Streptomyces sp. FXP04对水稻种子萌发和幼苗生长的影响[J]. 作物杂志, 2020, (6): 163–169
[9] 邸娜, 郑娜, 韩海军, 王靖, 崔超, 郑喜清. 不同向日葵品种根系分泌物对向日葵列当萌发的刺激作用[J]. 作物杂志, 2020, (6): 197–201
[10] 张海洋, 李海燕, 孟庆林, 何超群, 刘树清. 不同杀菌剂对向日葵菌核病的田间防治效果[J]. 作物杂志, 2020, (4): 202–205
[11] 袁长凯, 罗海华, 陈功, 高欣, 彭金剑, 向春玲, 殷梦瑶, 王培培, 徐兰兰, 汤飞宇. 不同棉花基因型种子萌发响应铜胁迫的差异[J]. 作物杂志, 2020, (3): 53–59
[12] 王蕾,王悦,严宗山,李润喜,谢忠清,张自强,张想平. 大麦籽粒淀粉和β-葡聚糖积累特性研究[J]. 作物杂志, 2020, (2): 119–124
[13] 德木其格,刘志萍,王磊,王金波,齐海祥,徐寿军. 氮肥对大麦灌浆期叶片光合性能的影响及其相关性分析[J]. 作物杂志, 2020, (1): 103–109
[14] 赵准,李剑,宋瑞娇,郭岩,令江瑞,齐军仓. 不同种植密度对大麦产量和青贮品质的影响[J]. 作物杂志, 2020, (1): 110–116
[15] 张笛,苗兴芬,王雨婷. 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选[J]. 作物杂志, 2019, (6): 43–49
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!