作物杂志,2021, 第6期: 7887 doi: 10.16035/j.issn.1001-7283.2021.06.013
龚林涛(), 苏秀娟(), 廖燕, 克热木汗·吾斯曼, 周迪, 尹松松
Gong Lintao(), Su Xiujuan(), Liao Yan, Keremuhan·Wusiman , Zhou Di, Yin Songsong
摘要:
从高油薰衣草品种“杂花”中克隆得到芳樟醇合酶基因LIS1和LIS2,并对其进行了生物信息学和表达模式分析、原核表达和酶活性检测,以低油品种“法国蓝”为对照。结果表明,LIS1基因编码602个氨基酸,LIS2基因编码564个氨基酸。LIS1蛋白与阔叶薰衣草、一串红的芳樟醇合酶亲缘关系相近,LIS2蛋白与狭叶薰衣草、杂薰衣草的芳樟醇合酶亲缘关系相近。LIS1基因在“杂花”花器官半开期、盛开期和衰败期的表达量均高于“法国蓝”;LIS1基因在“杂花”花萼中的表达量最高,且仅在“法国蓝”雄蕊中少量表达。LIS2基因在“杂花”花器官不同组织和不同发育时期表达量均低于其在“法国蓝”中表达量,该基因在“杂花”花器官衰败期和“法国蓝”花器官半开期表达量最高,在2个品种花萼中高表达。LIS2基因在2个品种不同发育时期及组织中的表达量均明显高于LIS1基因。LIS1和LIS2重组蛋白具有单萜合酶活性,且均参与合成芳樟醇。
[1] | 高婷婷, 谭勇, 魏雯, 等. 薰衣草的研究进展. 海峡两岸暨CSNR全国中药及天然药物资源学术研讨会, 2012:737-740. |
[2] | 王玉芹, 孙亚军, 施献儿. 薰衣草精油的化学成分与药理活性. 国外医药(植物药分册), 2004(1):5-8. |
[3] |
Woronuk G, Demissie Z, Rheault M, et al. Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Medica, 2011, 77(1):7-15.
doi: 10.1055/s-0030-1250136 pmid: 20665367 |
[4] | 樊荣辉, 黄敏玲, 钟淮钦, 等. 花香的生物合成、调控及基因工程研究进展. 中国细胞生物学报, 2011, 33(9):1028-1036. |
[5] | 陈尚钘, 赵玲华, 徐小军. 天然芳樟醇资源及其开发利用. 林业工程学报, 2013, 27(2):13-17. |
[6] |
Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature. Science, 2001, 291(5511):2141-2144.
pmid: 11251117 |
[7] | 刘静, 徐江涛. 薰衣草精油对小鼠镇静催眠作用的实验研究. 临床和实验医学杂志, 2012, 11(18):1440-1441. |
[8] |
Linck V D M, Silva A L D, Micheli Figueiró, et al. Inhaled linalool-induced sedation in mice. Phytomedicine, 2009, 16(4):303-307.
doi: 10.1016/j.phymed.2008.08.001 |
[9] |
Pichersky E, Lewinsohn E, Croteau R. Purification and characterization of S-linalool synthase,an enzyme involved in the production of floral scent in Clarkia breweri. Archives of Biochemistry and Biophysics, 1995, 316(2):803-807.
pmid: 7864636 |
[10] |
Dudareva N, Cseke L, Blanc V M, et al. Evolution of floral scent in Clarkia:novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell, 1996, 8(7):1137-1148.
pmid: 8768373 |
[11] |
Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, et al. Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metabolic Engineering, 2014, 23:136-144.
doi: 10.1016/j.ymben.2014.03.003 pmid: 24685653 |
[12] |
Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiology, 2001, 127(3):1256-1265.
pmid: 11706204 |
[13] | He J, Fandino R A, Halitschke R, et al. An unbiased approach elucidates variation in (S)-(+)-linalool,a context-specific mediator of a tri-trophic interaction in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29):14651-14660. |
[14] |
Tengxun Z, Guo Y H, Shi X J, et al. Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers. Plant Physiology and Biochemistry, 2020, 151:391-399.
doi: S0981-9428(20)30161-3 pmid: 32278293 |
[15] | Zeng X L, Liu C, Zheng R R, et al. Emission and accumulation of monoterpene and the key terpene synthase (TPS) associated with monoterpene biosynthesis in Osmanthus fragrans Lour. Frontiers in Plant Science, 2015, 6:1232. |
[16] | 张雪荣. 薰衣草芳樟醇合酶的基因克隆、功能鉴定及转基因技术的研究. 呼和浩特:内蒙古农业大学, 2007. |
[17] | 赵钟鑫, 王健, 李琴, 等. 阔叶薰衣草芳樟醇合酶基因的克隆与表达载体构建. 植物研究, 2013, 33(3):308-316. |
[18] | 方柳. 莽山野柑特征香气相关候选基因克隆和功能鉴定. 武汉:华中农业大学, 2014. |
[19] |
Huang X Z, Xiao Y T, KöLlner T G, et al. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell and Environment, 2018, 41(1):261-274.
doi: 10.1111/pce.v41.1 |
[20] |
Cseke L, Dudareva N, Pichersky E. Structure and evolution of linalool synthase. Molecular Biology and Evolution, 1998, 15(11):1491-1498.
pmid: 12572612 |
[21] |
Raguso R A, Pichersky E. New perspectives in pollination biology:floral fragrances. A day in the life of a linalool molecule:chemical communication in a plant-pollinator system. Part 1:linalool biosynthesis in flowering plants. Plant Species Biology, 1999, 14(2):95-120.
doi: 10.1046/j.1442-1984.1999.00014.x |
[22] |
Yu F, Utsumi R. Diversity,regulation,and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cellular and Molecular Life Sciences, 2009, 66(18):3043-3052.
doi: 10.1007/s00018-009-0066-7 |
[23] |
Lin Y L, Lee Y R, Huang W K, et al. Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genetics and Genomes, 2014, 10(1):75-86.
doi: 10.1007/s11295-013-0665-1 |
[24] |
Yue Y, Yu R, Fan Y. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta, 2014, 240(4):745-762.
doi: 10.1007/s00425-014-2127-x |
[25] |
Gao F Z, Liu B F, Li M, et al. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. Journal of Experimental Botany, 2018, 69(18):4249-4265.
doi: 10.1093/jxb/ery224 |
[26] |
Jiang Y, Qian R, Zhang W, et al. Composition and biosynthesis of scent compounds from sterile flowers of an ornamental plant Clematis florida cv. ‘Kaiser’. Molecules, 2020, 25(7):1711.
doi: 10.3390/molecules25071711 |
[27] |
Fathi E, Majdi M, Dastan D, et al. The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes/phenylpropanoids in yarrow (Achillea millefolium). Plant Physiology and Biochemistry, 2019, 142:43-52.
doi: 10.1016/j.plaphy.2019.06.036 |
[28] |
Biswas K K, Foster A J, Aung T, et al. Essential oil production:relationship with abundance of glandular trichomes in aerial surface of plants. Acta Physiologiae Plantarum, 2009, 31(1):13-19.
doi: 10.1007/s11738-008-0214-y |
[29] |
Chuang L, Wen C H, Lee Y R, et al. Identification,functional characterization,and seasonal expression patterns of five sesquiterpene synthases in Liquidambar formosana. Journal of Natural Products, 2018, 81(5):1162-1172.
doi: 10.1021/acs.jnatprod.7b00773 pmid: 29746128 |
[30] |
Magnard J L, Aurélie R B, Bettini F, et al. Linalool and linalool nerolidol synthases in roses,several genes for little scent. Plant Physiology and Biochemistry, 2018, 127:74-87.
doi: 10.1016/j.plaphy.2018.03.009 |
[31] |
Hattan J, Shindo K, Ito T, et al. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars. Planta, 2016, 243(4):959-972.
doi: 10.1007/s00425-015-2454-6 |
[32] |
Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution, 1985, 2(1):13-34.
pmid: 3916708 |
[33] | 刘琬菁, 吕海舟, 李滢, 等. 植物萜类合酶研究新进展. 植物生理学报, 2017, 53(7):1139-1149. |
[1] | 宋坤锋, 郝风声, 姚欣, 王静, 刘卫群. 烟草Nt14-3-3-like C基因的克隆与功能分析[J]. 作物杂志, 2021, (5): 613 |
[2] | 王通, 赵孝东, 甄萍萍, 陈静, 陈明娜, 陈娜, 潘丽娟, 王冕, 许静, 禹山林, 迟晓元, 张建成. 花生TCP转录因子的全基因组鉴定及组织表达特性分析[J]. 作物杂志, 2021, (2): 3544 |
[3] | 刘晓丽, 韩利涛, 魏楠, 申飞, 蔡一林. 玉米ZmGS5基因克隆、分子特性分析及对拟南芥的遗传转化[J]. 作物杂志, 2021, (1): 1625 |
[4] | 卢晓玲, 何铭, 张凯旋, 廖志勇, 周美亮. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究[J]. 作物杂志, 2020, (5): 3340 |
[5] | 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 5361 |
[6] | 李雪妹,刘畅,刘倩雯,张煜笛,李雪梅. PEG预处理对水分胁迫下水稻叶片抗氧化酶同工酶及其表达的影响[J]. 作物杂志, 2016, (6): 107111 |
[7] | 韩赞平,陈彦惠,郭书磊,祖小峰,王顺喜,赵西拥. 玉米抗逆基因ZmqLTG3-1的克隆及功能分析[J]. 作物杂志, 2016, (4): 4755 |
[8] | 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 7579 |
[9] | 袁红梅,郭文栋,赵丽娟,于莹,吴建忠,程莉莉,赵东升,康庆华,黄文功,姚玉波,宋喜霞,姜卫东,刘岩,马廷芬,吴广文,关凤芝. 亚麻糖基转移酶基因LuUGT72E1的克隆与表达分析[J]. 作物杂志, 2016, (4): 6267 |
[10] | 汪晓东, 陈洋, 于月华, 等. 大豆GmNF-YA3基因结构及原核表达分析[J]. 作物杂志, 2015, (4): 4750 |
[11] | 吴鹏, 郭茜茜, 武涛, 等. 黄瓜ABC转运蛋白基因(abca19)的克隆及其对农药霜霉威胁迫的响应[J]. 作物杂志, 2015, (3): 4551 |
[12] | 王红, 杨镇, 肖军, 等. 两种植物内生真菌的醇提取物对水稻根部基因表达谱的分析[J]. 作物杂志, 2014, (2): 4852 |
[13] | 王慧, 杨小艳, 翁建峰, 等. 抗玉米螟基因GrylA.301原核表达和玉米遗传转化[J]. 作物杂志, 2014, (2): 3438 |
[14] | 路喆, 王朴, 王自健, 等. 薰衣草新品种新薰一号的选育及特征特性[J]. 作物杂志, 2014, (1): 153153 |
[15] | 孟繁君, 陈明, 徐长营, 等. 玉米C2H2型锌指蛋白基因ZFP225的鉴定、生物信息学分析与克隆[J]. 作物杂志, 2014, (1): 4953 |
|