作物杂志,2022, 第1期: 1119 doi: 10.16035/j.issn.1001-7283.2022.01.002
Liu Lei(), Song Nana, Qi Xiaoli, Cui Kehui()
摘要:
植物根系是活跃的物质代谢和吸收器官,对植株生物量积累、养分和水分高效吸收利用具有重要作用。本文主要综述了水稻根系形态、解剖、生理特征与氮吸收利用效率的关系以及不同氮效率品种根系特征的差异,并综述了促进根系生长和提高氮吸收利用效率的栽培调控措施,展望了未来水稻根系的研究方向,为水稻氮肥减施、氮高效栽培管理技术优化和氮高效品种选育提供理论依据。
[1] |
Peng S B, Buresh R J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crop Research, 2006, 96(1):37-47.
doi: 10.1016/j.fcr.2005.05.004 |
[2] |
Cui Z L, Zhang H Y, Chen X P, et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696):363-366.
doi: 10.1038/nature25785 |
[3] |
Bowles T M, Atallah S S, Campbell E E, et al. Addressing agricultural nitrogen losses in a changing climate. Nature Sustainability, 2018, 1(8):399-408.
doi: 10.1038/s41893-018-0106-0 |
[4] |
Shi X, Hu K, Batchelor W D, et al. Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River. Agricultural Water Management, 2020, 228(20):105877.
doi: 10.1016/j.agwat.2019.105877 |
[5] |
Ma Z, Guo D, Xu X, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555(7694):94-97.
doi: 10.1038/nature25783 |
[6] |
Wu Z, Luo J, Han Y, et al. Low nitrogen enhances nitrogen use efficiency by triggering NO3- uptake and its long-distance translocation. Journal of Agricultural and Food Chemistry, 2019, 67(24):6736-6747.
doi: 10.1021/acs.jafc.9b02491 |
[7] |
Wu W, Cheng S. Root genetic research,an opportunity and challenge to rice improvement. Field Crops Research, 2014, 165:111-124.
doi: 10.1016/j.fcr.2014.04.013 |
[8] |
Lynch J P. Root phenotypes for improved nutrient capture:an underexploited opportunity for global agriculture. New Phytologist, 2019, 223(2):548-564.
doi: 10.1111/nph.2019.223.issue-2 |
[9] | Bishopp A, Lynch J P. The hidden half of crop yields. Nature Plants, 2015, 1(8):1-2. |
[10] | 钟楚, 曹小闯, 朱练峰, 等. 稻田干湿交替对水稻氮素利用率的影响与调控研究进展. 农业工程学报, 2016, 32(19):139-147. |
[11] | 蔡昆争, 骆世明, 段舜山. 水稻根系的空间分布及其与产量的关系. 华南农业大学学报, 2003, 24(3):1-4. |
[12] |
Meng T, Wei H, Li X, et al. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Research, 2018, 228:135-146.
doi: 10.1016/j.fcr.2018.08.024 |
[13] |
Wei H, Hu L, Zhu Y, et al. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research, 2018, 218:88-96.
doi: 10.1016/j.fcr.2018.01.012 |
[14] |
Ju C, Buresh R J, Wang Z, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Research, 2015, 175:47-55.
doi: 10.1016/j.fcr.2015.02.007 |
[15] | 陈晨, 龚海青, 张敬智, 等. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23(2):333-341. |
[16] |
Chen M, Chen G, Di D, et al. Higher nitrogen use efficiency (NUE) in hybrid "super rice" links to improved morphological and physiological traits in seedling roots. Journal of Plant Physiology, 2020, 251:153191.
doi: S0176-1617(20)30081-X pmid: 32585498 |
[17] | 刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002, 35(11):1416-1419. |
[18] |
刘立军, 王康君, 卞金龙, 等. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40(11):1999-2007.
doi: 10.3724/SP.J.1006.2014.01999 |
[19] | 王强, 李炜, 贺帆, 等. 不同基因型水稻氮效率与生育后期根系性状关系研究. 广东农业科学, 2015, 42(11):23-28. |
[20] | 白建江, 朴钟泽, 曾威, 等. 不同侧根密度对水稻生长发育及主要农艺性状的影响. 分子植物育种, 2019, 17(5):1624-1630. |
[21] | Wang X B, Wu P, Hu B, et al. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Botanica Sinica, 2002, 44(6):678-683. |
[22] |
Liu B, Wu J, Yang S, et al. Nitrate regulation of lateral root and root hair development in plants. Journal of Experimental Botany, 2019, 71(15):4405-4414.
doi: 10.1093/jxb/erz536 |
[23] |
Postma J A, Dathe A, Lynch J P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiology, 2014, 166(2):590-602.
doi: 10.1104/pp.113.233916 |
[24] |
Bates T R, Lynch J P. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. American Journal of Botany, 2000, 87(7):964-970.
pmid: 10898773 |
[25] | Nestler J, Wissuwa M. Superior root hair formation confers root efficiency in some,but not all,rice genotypes upon P deficiency. Frontiers in Plant Science, 2016, 7:1935-1935. |
[26] |
Klinsawang S, Sumranwanich T, Wannaro A, et al. Effects of root hair length on potassium acquisition in rice (Oryza sativa L.). Applied Ecology and Environmental Research, 2018, 16(2):1609-1620.
doi: 10.15666/aeer |
[27] | 丁仕林, 刘朝雷, 钱前. 水稻根系遗传研究进展. 中国稻米, 2019, 25(5):24-29. |
[28] |
Uga Y, Sugimoto K, Ogawa S, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45(9):1097-1102.
doi: 10.1038/ng.2725 |
[29] |
Thorup-Kristensen K, Halberg N, Nicolaisen M, et al. Digging deeper for agricultural resources,the value of deep rooting. Trends in Plant Science, 2020, 25(4):406-417.
doi: S1360-1385(19)30332-2 pmid: 31964602 |
[30] |
Arai-Sanoh Y, Takai T, Yoshinaga S, et al. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Scientific Reports, 2015, 4:5563.
doi: 10.1038/srep05563 |
[31] | 凌启鸿, 陆卫平, 蔡建中, 等. 水稻根系分布与叶角关系的研究初报. 作物学报, 1989, 15(2):123-131. |
[32] |
Lou Q J, Chen L, Mei H W, et al. Root transcriptomic analysis revealing the importance of energy metabolism to the development of deep roots in rice (Oryza sativa L.). Frontiers in Plant Science, 2017, 8:1314.
doi: 10.3389/fpls.2017.01314 |
[33] |
Yang X, Li Y, Ren B, et al. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant and Cell Physiology, 2012, 53(3):495-504.
doi: 10.1093/pcp/pcs003 |
[34] |
Barberon M, Geldner N. Radial transport of nutrients:the plant root as a polarized epithelium. Plant Physiology, 2014, 166(2):528-537.
doi: 10.1104/pp.114.246124 pmid: 25136061 |
[35] | 顾东祥, 汤亮, 曹卫星, 等. 基于图像分析方法的水稻根系形态特征指标的定量分析. 作物学报, 2010, 36(5):810-817. |
[36] | 戢林, 李廷轩, 张锡洲, 等. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45(23):4770-4781. |
[37] | 李娜, 杨志远, 代邹, 等. 不同氮效率水稻根系形态和氮素吸收利用与产量的关系. 中国农业科学, 2017, 50(14):2683-2695. |
[38] |
Kadam N, Yin X, Bindraban P, et al. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water-deficit stress than rice?. Plant Physiology, 2015, 167(4):1389-1401.
doi: 10.1104/pp.114.253328 |
[39] |
Bowsher A W, Mason C M, Goolsby E W, et al. Fine root tradeoffs between nitrogen concentration and xylem vessel traits preclude unified whole-plant resource strategies in Helianthus. Ecology and Evolution, 2016, 6(4):1016-1031.
doi: 10.1002/ece3.2016.6.issue-4 |
[40] |
Kong D, Wang J, Zeng H, et al. The nutrient absorption-transportation hypothesis:optimizing structural traits in absorptive roots. New Phytologist, 2017, 213(4):1569-1572.
doi: 10.1111/nph.2017.213.issue-4 |
[41] | 张韶昀, 李向岭, 刘盼, 等. 土壤耕作与施肥配合对玉米根系微观结构及产量的影响. 作物杂志, 2018(6):144-148. |
[42] |
York L M, Galindo-Castañeda T, Schussler J R, et al. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. Journal of Experimental Botany, 2015, 66(8):2347-2358.
doi: 10.1093/jxb/erv074 |
[43] |
Chimungu J G, Brown K M, Lynch J P. Large root cortical cell size improves drought tolerance in maize. Plant Physiology, 2014, 166(4):2166-2178.
doi: 10.1104/pp.114.250449 pmid: 25293960 |
[44] |
Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiology, 2014, 166(4):1943-1955.
doi: 10.1104/pp.114.249037 pmid: 25355868 |
[45] |
Galindo-Castañeda T, Brown K M, Lynch J P. Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant Cell and Environment, 2018, 41:1579-1592.
doi: 10.1111/pce.v41.7 |
[46] |
Vanhees D J, Loades K W, Glyn B A, et al. Root anatomical traits contribute to deeper rooting of maize under compacted field conditions. Journal of Experimental Botany, 2020, 71(14):4243-4257.
doi: 10.1093/jxb/eraa165 pmid: 32420593 |
[47] | 刘依依, 傅志强, 龙文飞, 等. 水稻根系泌氧能力与根系通气组织大小相关性的研究. 农业现代化研究, 2015, 36(6):1105-1111. |
[48] |
Abiko T, Obara M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Science, 2014, 215-216:76-83.
doi: 10.1016/j.plantsci.2013.10.016 |
[49] |
Abiko T, Miyasaka S C. Aerenchyma and barrier to radial oxygen loss are formed in roots of Taro (Colocasia esculenta) propagules under flooded conditions. Journal of Plant Research, 2020, 133:49-56.
doi: 10.1007/s10265-019-01150-6 |
[50] | 陈贵, 陈梅, 朱静娜, 等. 籼粳杂交稻高效吸收氮素的相关机理研究. 土壤, 2020, 52(6):1113-1119. |
[51] | Lynch J P, Brown K M. Root strategies for phosphorus acquisition. Plant Ecophysiology, 2008, 7:83-116. |
[52] |
Saengwilai P, Nord E A, Chimungu J G, et al. Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiology, 2014, 166(2):726-735.
doi: 10.1104/pp.114.241711 pmid: 24891611 |
[53] |
Postma J A, Lynch J P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen,phosphorus,and potassium. Plant Physiology, 2011, 156(3):1190-1201.
doi: 10.1104/pp.111.175489 |
[54] |
Niones J M, Suralta R R, Inukai Y, et al. Roles of root aerenchyma development and its associated QTL in dry matter production under transient moisture stress in rice. Plant Production Science, 2013, 16(3):205-216.
doi: 10.1626/pps.16.205 |
[55] |
Krishnamurthy P, Ranathunge K, Franke R, et al. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 2009, 230(1):119-134.
doi: 10.1007/s00425-009-0930-6 pmid: 19363620 |
[56] |
Huang L, Li W C, Tam N F Y C, et al. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). Journal of Environmental Sciences, 2019, 75:296-306.
doi: 10.1016/j.jes.2018.04.005 |
[57] |
Melino V J, Plett D C, Bendre P, et al. Nitrogen depletion enhances endodermal suberization without restricting transporter-mediated root NO3- influx. Journal of Plant Physiology, 2021, 257:153334.
doi: 10.1016/j.jplph.2020.153334 pmid: 33373827 |
[58] |
Ejiri M, Sawazaki Y, Shiono K. Some accessions of amazonian wild rice (Oryza glumaepatula) constitutively form a barrier to radial oxygen loss along adventitious roots under aerated conditions. Plants, 2020, 9(7):880.
doi: 10.3390/plants9070880 |
[59] |
Ranathunge K, Schreiber L, Bi Y M, et al. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta, 2016, 243(1):231-249.
doi: 10.1007/s00425-015-2406-1 pmid: 26384983 |
[60] |
Qin L, Walk T C, Han P, et al. Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiology, 2019, 179(1):329-347.
doi: 10.1104/pp.18.00716 pmid: 30455286 |
[61] |
Ranathunge K, El-Kereamy A, Gidda S, et al. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany, 2014, 65(4):965-979.
doi: 10.1093/jxb/ert458 pmid: 24420570 |
[62] |
Wang W, Hu B, Yuan D, et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell, 2018, 30(3):638-651.
doi: 10.1105/tpc.17.00809 pmid: 29475937 |
[63] | 程建峰, 戴廷波, 荆奇, 等. 不同水稻基因型的根系形态生理特性与高效氮素吸收. 土壤学报, 2007, 44(2):266-272. |
[64] | 江立庚, 曹卫星. 水稻高效利用氮素的生理机制及有效途径. 中国水稻科学, 2002(16):261-264. |
[65] | 徐国伟, 陆大克, 王贺正, 等. 施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响. 中国生态农业学报, 2018, 26(4):516-525. |
[66] | 戢林, 李廷轩, 张锡洲, 等. 水稻氮高效基因型根系分泌物中有机酸和氨基酸的变化特征. 植物营养与肥料学报, 2012, 18(5):1046-1055. |
[67] |
Zhang J, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37:676-684.
doi: 10.1038/s41587-019-0104-4 |
[68] |
Hu B, Wang W, Ou S, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47(7):834-838.
doi: 10.1038/ng.3337 |
[69] |
Fan X R, Naz M, Fan X, et al. Plant nitrate transporters:from gene function to application. Journal of Experimental Botany, 2017, 68(10):2463-2475.
doi: 10.1093/jxb/erx011 |
[70] | 张振华. 作物硝态氮转运利用与氮素利用效率的关系. 植物营养与肥料学报, 2017, 23(1):217-223. |
[71] |
Han Y L, Song H X, Liao Q, et al. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology, 2016, 170(3):1684-1698.
doi: 10.1104/pp.15.01377 |
[72] | Hu R, Qiu D Y, Chen Y, et al. Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Frontiers in Plant Science, 2016, 7(48):1529. |
[73] |
Tang W, Ye J, Yao X, et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications, 2019, 10(1):5279.
doi: 10.1038/s41467-019-13187-1 |
[74] |
Okumoto S, Pilot G. Amino acid export in plants:a missing link in nitrogen cycling. Molecular Plant, 2011, 4(3):453-463.
doi: 10.1093/mp/ssr003 pmid: 21324969 |
[75] |
Guo H, Tian Z W, Sun S Z, et al. Preanthesis root growth and nitrogen uptake improved wheat grain yield and nitrogen use efficiency. Agronomy Journal, 2019, 111(6):3048-3056.
doi: 10.2134/agronj2019.03.0162 |
[76] | 谢孟林, 李强, 查丽, 等. 低氮胁迫对不同耐低氮性玉米品种幼苗根系形态和生理特征的影响. 中国生态农业学报, 2015, 23(8):946-953. |
[77] |
Kiyomiya S, Nakanishi H, Uchida H, et al. Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiology, 2001, 125(4):1743-1753.
pmid: 11299355 |
[78] |
Funayama K, Kojima S, Tabuchikobayashi M, et al. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant and Cell Physiology, 2013, 54(6):934-943.
doi: 10.1093/pcp/pct046 |
[79] |
Bao A, Zhao Z, Ding G, et al. The stable level of glutamine synthetase 2 plays an important role in rice growth and in carbon-nitrogen metabolic balance. International Journal of Molecular Sciences, 2015, 16(6):12713-12736.
doi: 10.3390/ijms160612713 |
[80] |
Lee S, Marmagne A, Park J, et al. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. The Plant Journal, 2020, 103:7-20.
doi: 10.1111/tpj.v103.1 |
[81] |
Gao Z, Wang Y, Chen G, et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications, 2019, 10(1):5207.
doi: 10.1038/s41467-019-13110-8 |
[82] |
Theodorou M E, Plaxton W C. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiology, 1993, 101(2):339-344.
pmid: 12231689 |
[83] |
Rakhmankulova Z F, Fedyaev V V, Podashevka O A, et al. Alternative respiration pathways and secondary metabolism in plants with different adaptive strategies under mineral deficiency. Russian Journal of Plant Physiology, 2003, 50(2):206-212.
doi: 10.1023/A:1022973130775 |
[84] | 秦嗣军, 吕德国, 李志霞, 等. 不同形态氮素对东北山樱幼苗根系呼吸代谢及生物量的影响. 园艺学报, 2011, 38(6):1021-1028. |
[85] |
Vives-Peris V, Ollas C D, Gómez-Cadenas A, et al. Root exudates:from plant to rhizosphere and beyond. Plant Cell Reports, 2019, 39(1):3-17.
doi: 10.1007/s00299-019-02447-5 |
[86] | 徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2):140-146. |
[87] |
Xuan W, Beeckman T, Xu G. Plant nitrogen nutrition:sensing and signaling. Current Opinion in Plant Biology, 2017, 39:57-65.
doi: S1369-5266(16)30216-3 pmid: 28614749 |
[88] |
Sun L, Lu Y, Yu F, et al. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist, 2016, 212:646-656.
doi: 10.1111/nph.14057 pmid: 27292630 |
[89] | 曾后清, 朱毅勇, 王火焰, 等. 生物硝化抑制剂—一种控制农田氮素流失的新策略. 土壤学报, 2012, 49(2):382-388. |
[90] |
Chen S M, Waghmode T R, Sun R B, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 2019, 7(4):136.
doi: 10.1186/s40168-019-0750-2 |
[91] |
王孝林, 王二涛. 根际微生物促进水稻氮利用的机制. 植物学报, 2019, 54(3):285-287.
doi: 10.11983/CBB19060 |
[92] | 徐如玉, 左明雪, 袁银龙, 等. 氮肥用量优化对甜玉米氮肥吸收利用率及氮循环微生物功能基因的影响. 南方农业学报, 2020, 51(12):2919-2926. |
[93] | 程林, 章力干, 张国漪, 等. 氨基酸增值尿素对水稻苗期生长及根际微生物菌群的影响. 植物营养与肥料学报, 2021, 27(1):35-44. |
[94] | 张绍文, 何巧林, 王海月, 等. 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响. 植物营养与肥料学报, 2018, 24(1):82-94. |
[95] | 严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015, 21(1):23-35. |
[96] |
Yang C, Yang L, Yang Y, et al. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 2004, 70(1):67-81.
doi: 10.1016/j.agwat.2004.05.003 |
[97] |
Liu L, Chen T T, Wang Z Q, et al. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Research, 2013, 154:226-235.
doi: 10.1016/j.fcr.2013.08.016 |
[98] | 李娜, 杨志远, 代邹, 等. 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响. 中国水稻科学, 2017, 31(5):500-512. |
[99] | 徐国伟, 陆大克, 刘聪杰, 等. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响. 农业工程学报, 2018, 34(7):137-146. |
[100] | 李凤霞, 张学艺, 袁海燕, 等. 宁夏引黄灌区水稻节水灌溉生产效应研究. 干旱地区农业研究, 2006, 24(4):46-50. |
[101] | 李婷婷, 冯钰枫, 朱安, 等. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33(4):293-302. |
[102] | 王熹, 陶龙兴, 黄效林, 等. 灌溉稻田水稻旱作法研究——水稻的生育与生理特性. 中国农业科学, 2004, 37(9):1274-1281. |
[103] |
Sun Y, Ma J, Sun Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Research, 2012, 127:85-98.
doi: 10.1016/j.fcr.2011.11.015 |
[104] | 河海兵, 杨茹, 廖江, 等. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 作物学报, 2016, 49(2):305-318. |
[105] |
Zhang Y, Liu M, Saiz G, et al. Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Research, 2017, 213:186-193.
doi: 10.1016/j.fcr.2017.08.008 |
[106] | Lynch J P. Root phenes that reduce the metabolic costs of soil exploration:opportunities for 21st century agriculture. Plant, Cell and Environment, 2015, 38(9):12451. |
[1] | 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102109 |
[2] | 龙瑞平, 张朝钟, 戈芹英, 万卫东, 王勤, 李贵勇, 夏琼梅, 朱海平, 杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析[J]. 作物杂志, 2022, (1): 124129 |
[3] | 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137141 |
[4] | 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161166 |
[5] | 段琉颖, 吴婷, 李霞, 谢建坤, 胡标林. 水稻细胞质雄性不育及其育性恢复基因的研究进展[J]. 作物杂志, 2022, (1): 2030 |
[6] | 李旭, 付立东, 王宇, 隋鑫, 任海, 吕小红, 马畅, 杜萌, 毛艇. DEP1与NRT1.1B基因的遗传互作对水稻氮素利用的影响[J]. 作物杂志, 2021, (6): 2227 |
[7] | 张俊, 邓艾兴, 尚子吟, 唐志伟, 严圣吉, 张卫建. 秸秆还田下水稻丰产与甲烷减排的技术模式[J]. 作物杂志, 2021, (6): 230235 |
[8] | 余镁霞, 邓浩东, 谭景艾, 宋贵廷, 吴光亮, 陈利平, 刘睿琦, 邹安东, 贺浩华, 边建民. 利用染色体片段置换系定位低温影响水稻萌芽期根长和芽长QTL[J]. 作物杂志, 2021, (6): 3645 |
[9] | 苏代群, 陈亮, 李锋, 武琦, 白君杰, 邹德堂, 王敬国, 刘化龙, 郑洪亮. 利用高密度遗传图谱发掘水稻抽穗期新位点[J]. 作物杂志, 2021, (6): 5861 |
[10] | 石楠, 高志强, 胡海燕, 陈崇怡, 文双雅. 杂交稻有序机抛增密减肥处理对产量及肥料偏生产力的影响[J]. 作物杂志, 2021, (5): 128133 |
[11] | 唐志强, 张丽颖, 何娜, 马作斌, 赵明珠, 王昌华, 郑文静, 银永安, 王辉. 机械旱直播对水稻生育进程、光合特性及产量的影响[J]. 作物杂志, 2021, (5): 8794 |
[12] | 吴可, 谢慧敏, 刘文奇, 莫并茂, 韦国良, 陆献, 李壮林, 邓森霞, 韦善清, 梁和, 江立庚. 氮、磷、钾肥对南方双季稻区水稻产量及产量构成因子的影响[J]. 作物杂志, 2021, (4): 178183 |
[13] | 凌晨, 刘洪, 杨哲, 黄展权, 陈孟强, 饶得花, 徐振江. 双季稻栽培对水稻DUS测试标准品种数量性状表达的影响[J]. 作物杂志, 2021, (4): 1825 |
[14] | 张全芳, 姜明松, 陈峰, 朱文银, 周学标, 杨连群, 徐建第. 山东省水稻品种(系)的遗传多样性分析[J]. 作物杂志, 2021, (4): 2631 |
[15] | 王国骄, 宋鹏, 杨振中, 张文忠. 秸秆还田对水稻光合物质生产特征、稻米品质和土壤养分的影响[J]. 作物杂志, 2021, (4): 6772 |
|