作物杂志,2022, 第4期: 107–114 doi: 10.16035/j.issn.1001-7283.2022.04.015

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响

陈士勇1(), 王锐2, 陈志青2, 张海鹏2, 王娟娟1, 单玉华1, 杨艳菊1()   

  1. 1扬州大学环境科学与工程学院,225009,江苏扬州
    2农业农村部长江流域稻作技术创新中心/江苏省作物遗传生理重点实验室/江苏省粮食作物现代产业技术协同创新中心,225009,江苏扬州
  • 收稿日期:2021-09-04 修回日期:2021-11-21 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 杨艳菊
  • 作者简介:陈士勇,主要从事土壤化学研究,E-mail: 1817198747@qq.com
  • 基金资助:
    国家自然科学基金(31901447);国家自然科学基金(41701329);国家现代农业产业技术体系建设专项(CARS-01-27);江苏省重点研发计划(BE2020319);扬州市2019年“绿扬金凤优秀博士”项目

Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content

Chen Shiyong1(), Wang Rui2, Chen Zhiqing2, Zhang Haipeng2, Wang Juanjuan1, Shan Yuhua1, Yang Yanju1()   

  1. 1College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture and Rural Affairs/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-09-04 Revised:2021-11-21 Online:2022-08-15 Published:2022-08-22
  • Contact: Yang Yanju

摘要:

以优质食味粳稻南粳9108为材料,于2018和2019年采用盆栽试验方式,设置了纳米锌和离子锌2种锌形态及4个施用量(0、7.5、30和60kg/hm2)处理,研究了不同用量纳米锌和离子锌对水稻产量及其构成因素和籽粒锌积累量的影响,为水稻锌肥合理选择和施用提供科学依据。结果表明,与不施锌处理(CK)相比,纳米锌和离子锌施用均能显著增加水稻产量,各处理增产幅度在1.3%~11.9%,且水稻籽粒产量随锌施用量的增加而增加。相同锌施用量条件下,纳米锌增产效果显著高于离子锌处理,其原因在于纳米锌处理水稻具有更高的有效穗数、穗粒数和结实率。与离子锌处理相比,纳米锌处理显著提高了水稻干物质积累量、叶面积指数、叶片净光合速率、叶片气孔导度、胞间CO2浓度和蒸腾速率,从而促进了水稻产量的形成。与CK处理相比,纳米锌和离子锌施用均可显著增加籽粒锌含量和锌积累量。纳米锌处理的籽粒锌含量和积累量分别较离子锌处理增加了4.5%~10.3%和6.2%~15.4%。综上所述,对于促进水稻籽粒产量及其构成因素,纳米锌较离子锌具有明显优势,同时施用纳米锌能够有效提高籽粒锌含量,可作为提高稻米营养品质的有效措施。

关键词: 纳米锌, 离子锌, 水稻, 产量形成, 锌含量

Abstract:

In this study, pot experiments were carried out in 2018 and 2019 to examine the effects of nano-Zn and ion-Zn application (at dosages of 0, 7.5, 30 and 60kg/ha) on rice yield, yield components, and grain zinc accumulation. Nanjing 9108 rice cultivar with good taste quality was used as material. The influence of nano-Zn and ion-Zn on rice yield and its components and grain zinc accumulation was studied, which provides a scientific basis for the rational selection and application of rice zinc fertilizer. The results showed that both nano-Zn and ion-Zn application significantly increased rice yield by 1.3% and 11.9% compared with no zinc treatment, and rice grain yield increased with the increase of zinc application. Under the same condition of zinc application amount, the yield increase effect of nano-Zn was significantly higher than that of ion-zinc treatment due to the higher effective panicles number, spikelets per panicle and seed-setting rate of nano-Zn treatment. Compared with ion-Zn treatment, nano-Zn treatment significantly improved rice dry matter accumulation, leaf area index, net leaf photosynthetic rate, leaf stomatal conductance, intercellular CO2 concentration, and transpiration rate, thus promoting the formation of rice yield. Both nano-Zn and ion-Zn application significantly increased the grain zinc content and zinc accumulation compared with the control treatment. The nano-Zn treatment grain zinc content and zinc accumulation were increased by 4.5%-10.3% and 6.2%-15.4% compared with the ion-zinc treatment, respectively. In conclusion, for promoting rice grain yield and its components, compared with ion-Zn, nano-Zn had obvious advantages, and the application of nano-Zn could effectively improve the zinc content of grain, which could be used as an effective measure to improve the nutritional quality of rice.

Key words: Nano-zinc, Ion-zinc, Rice, Yield formation, Zinc content

表1

纳米锌和离子锌对水稻产量及其构成因素的影响

年份
Year
处理
Treatment
有效穗数
Effective panicles number (×104/hm2)
穗粒数
Spikelets per panicle
千粒重
1000-grain weight (g)
结实率
Seed-setting rate (%)
实收产量
Harvest yield (t/hm2)
2018 CK 355.05±1.37c 105.96±0.34d 27.13±0.13a 91.17±0.44a 9.36±0.01c
T1 363.85±1.37bc 110.27±1.56c 27.21±0.13a 91.14±0.15a 9.48±0.01bc
T2 366.97±1.24abc 111.14±2.17c 27.17±0.05a 91.19±0.31a 9.61±0.00bc
T3 368.48±0.15abc 111.73±0.24c 27.22±0.02a 91.23±0.27a 9.73±0.02abc
T4 371.51±1.49ab 116.97±0.24b 27.40±0.12a 91.28±0.32a 9.59±0.01bc
T5 374.48±2.05ab 120.64±2.55b 27.44±0.01a 91.19±0.23a 9.77±0.01ab
T6 380.61±1.80a 125.07±0.23a 27.38±0.03a 91.56±0.23a 10.13±0.01a
2019 CK 352.50±0.64c 105.28±0.16d 27.11±0.07a 91.52±0.08a 9.55±0.02c
T1 369.10±0.38b 109.52±0.05cd 27.22±0.05a 92.02±0.12a 9.82±0.00bc
T2 369.80±0.56b 109.66±0.14cd 27.26±0.02a 92.26±0.07a 9.96±0.01ab
T3 372.00±0.98ab 111.25±0.06bc 27.39±0.03a 91.81±0.05a 10.22±0.01ab
T4 373.75±0.11ab 116.22±0.22ab 27.43±0.06a 92.15±0.11a 9.95±0.02ab
T5 377.57±0.95ab 118.47±0.03ab 27.45±0.05a 92.33±0.17a 10.39±0.01ab
T6 386.91±0.22a 123.14±0.28a 27.59±0.06a 92.39±0.23a 10.69±0.01a

表2

纳米锌和离子锌对水稻干物质积累量的影响(2018)

处理
Treatment
干物质量Dry matter amount
拔节期
Jointing stage
齐穗期
Heading stage
成熟期
Maturity stage
CK 2.83±0.04e 8.26±0.31b 12.44±0.29b
T1 3.58±0.10d 8.91±0.35ab 14.60±0.59a
T2 3.84±0.05c 9.31±0.31a 14.88±0.35a
T3 3.92±0.11bc 9.46±0.36a 15.18±0.52a
T4 3.91±0.16bc 9.17±0.38a 14.83±0.60a
T5 4.06±0.06ab 9.41±0.43a 15.16±0.57a
T6 4.18±0.14a 9.57±0.46a 15.43±0.34a

表3

纳米锌和离子锌对水稻各生育期干物质积累量的影响(2018)

处理
Treatment
播种―拔节Sowing-jointing 拔节―齐穗Jointing-heading 齐穗―成熟Heading-maturity
积累量
Accumulation (t/hm2)
比例
Ratio (%)
积累量
Accumulation (t/hm2)
比例
Ratio (%)
积累量
Accumulation (t/hm2)
比例
Ratio (%)
CK 2.83±0.04e 22.72 5.43±0.33a 43.69 4.18±0.32b 33.60
T1 3.58±0.10d 24.53 5.33±0.36a 36.47 5.70±0.24a 39.00
T2 3.84±0.05c 25.82 5.47±0.26a 36.77 5.57±0.47a 37.41
T3 3.92±0.11bc 25.84 5.53±0.46a 36.46 5.72±0.38a 37.70
T4 3.91±0.16bc 26.37 5.26±0.54a 35.49 5.66±0.85a 38.14
T5 4.06±0.06ab 26.79 5.35±0.46a 35.27 5.75±0.35a 37.95
T6 4.18±0.14a 27.09 5.39±0.45a 34.96 5.86±0.80a 37.95

图1

纳米锌和离子锌对水稻叶片SPAD值的影响(2018)

表4

纳米锌和离子锌对水稻齐穗期剑叶光合作用的影响(2018)

处理Treatment Pn [μmol/(m2·s)] Gs [mol/(m2·s)] Ci (μmol/mol) Tr [mmol/(m2·s)]
CK 13.93±0.53e 0.58±0.02e 279.62±4.83c 7.34±0.21c
T1 19.14±0.57d 0.81±0.03d 326.50±1.48a 9.37±0.20b
T2 20.61±0.15c 0.86±0.01c 320.69±6.23ab 9.38±0.09b
T3 22.21±1.60ab 0.92±0.02b 313.96±10.28b 10.05±0.39a
T4 21.22±0.50bc 0.86±0.01c 314.08±7.07b 10.30±0.24a
T5 22.58±0.18a 0.93±0.01b 319.59±3.73ab 10.40±0.42a
T6 22.92±0.13a 0.97±0.02a 320.08±5.59ab 10.48±0.19a

表5

纳米锌和离子锌对水稻LAI的影响(2018)

处理
Treatment
拔节期
Jointing stage
齐穗期
Heading stage
成熟期
Maturity stage
CK 4.05±0.04d 7.13±0.12c 3.28±0.09c
T1 4.27±0.04c 7.38±0.08b 3.44±0.08bc
T2 4.47±0.00ab 7.38±0.08b 3.57±0.10a
T3 4.52±0.07ab 7.44±0.16ab 3.67±0.12a
T4 4.42±0.04b 7.42±0.07ab 3.58±0.11ab
T5 4.45±0.20ab 7.43±0.01ab 3.61±0.16ab
T6 4.58±0.01a 7.62±0.20a 3.78±0.11a

表6

纳米锌和离子锌对水稻籽粒锌含量及锌积累量的影响

处理
Treatment
2018 2019
籽粒锌含量
Grain Zn content (mg/kg)
籽粒锌积累
Grain Zn accumulation (g/hm2)
籽粒锌含量
Grain Zn content (mg/kg)
籽粒锌积累
Grain Zn accumulation (g/hm2)
CK 17.21±0.15e 161.11±1.00e 17.17±0.13c 163.94±6.01d
T1 18.62±0.29d 176.46±3.50d 19.12±0.44b 187.84±6.21c
T2 20.18±0.48c 194.01±5.07c 19.39±0.75b 193.12±10.48bc
T3 21.45±0.34b 208.70±10.56b 19.67±0.73b 200.92±13.96bc
T4 19.91±0.19c 190.91±7.67c 20.04±1.15b 199.41±4.20bc
T5 21.82±0.16b 213.14±3.89b 20.26±0.19b 210.52±11.26b
T6 22.62±0.45a 229.15±7.01a 21.70±0.29a 231.95±18.18a

图2

锌肥用量对水稻籽粒锌积累量的影响

[1] 韩金玲, 李雁鸣, 马春英. 锌对作物生长发育及产量的影响(综述). 河北科技师范学院学报, 2004, 18(4):72-75.
[2] Brown K H, Rivera J A, Bhutta Z, et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, 2004, 25(1/2):199-203.
[3] 石荣丽, 邹春琴, 张福锁. 籽粒铁、锌营养与人体健康研究进展. 广东微量元素科学, 2006, 13(7):1-8.
[4] 陈凤霞, 吕杰, 史元, 等. 我国稻米质量安全生态环境的现状及发展对策. 生态经济, 2015, 31(2):109-112.
[5] 刘珍环, 李正国, 唐鹏, 等. 近30年中国水稻种植区域与产量时空变化分析. 地理学报, 2013, 68(5):680-693.
[6] 冯绪猛, 郭九信, 王玉雯, 等. 锌肥品种与施用方法对水稻产量和锌含量的影响. 植物营养与肥料学报, 2016, 22(5):1329-1338.
[7] 郭九信, 廖文强, 孙玉明, 等. 锌肥施用方法对水稻产量及籽粒氮锌含量的影响. 中国水稻科学, 2014, 28(2):185-192.
[8] Sushanta K N, Dilip K D. Relative performance of chelated zinc and zinc sulphate for lowland rice (Oryza sativa L.). Nutrient Cycling in Agroecosystems, 2008, 81(3):219-227.
doi: 10.1007/s10705-007-9158-7
[9] 付力成. 叶面喷施锌肥对水稻锌吸收、分配及积累的影响. 杭州:浙江大学, 2011.
[10] Khampuang K, Lordkaew S, Dell B, et al. Foliar zinc application improved grain zinc accumulation and bioavailable zinc in unpolished and polished rice. Plant Production Science, 2021, 24(1):94-102.
doi: 10.1080/1343943X.2020.1797512
[11] 刘琦, 王张民, 潘斐, 等. 大田条件下水稻锌营养强化方法探究及效果评估. 土壤, 2019, 51(1):32-38.
[12] Prakash P, Hemalatha M, Joseph M. Zinc accounting for lowland rice (Oryza sativa L.) under different methods of zinc application with green leaf manuring. Advances in Crop Science and Technology, 2018, 6(3):374.
[13] Guo J X, Feng X M, Hu X Y, et al. Effects of soil zinc availability,nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. The Journal of Agricultural Science, 2016, 154(4):584-597.
doi: 10.1017/S0021859615000441
[14] 朱世东, 周根树, 蔡锐, 等. 纳米材料国内外研究进展Ⅰ——纳米材料的结构、特异效应与性能. 热处理技术与装备, 2010, 31(3):1-5,26.
[15] Yuvaraj M, Subramanian K S. Fabrication of zinc nano fertilizer on growth parameter of rice. Trends in Biosciences, 2014, 7(17):2564-2565.
[16] 吴文革, 周永进, 张健美, 等. 杂交中籼稻钵苗机插群体特征及产量形成优势分析. 核农学报, 2016, 30(7):1427-1434.
doi: 10.11869/j.issn.100-8551.2016.07.1427
[17] 徐金益, 申强, 赵冬青, 等. 无锡地区不同锌肥用量对水稻产量的影响. 现代农业研究, 2019(2):39-40,57.
[18] Pareek D K, Khandelwal R B, Deo C. Management of zinc fertilizer for sustainable wheat [Triticum aestvum (L.)] production on soil test value of zinc in ustipsamment soils of Rajasthan. An Asian Journal of Soil Science, 2012, 7(2):339-344.
[19] 刘铮. 我国土壤中锌含量的分布规律. 中国农业科学, 1994, 27(1):30-37.
[20] 郭九信, 隋标, 商庆银, 等. 氮锌互作对水稻产量及籽粒氮、锌含量的影响. 植物营养与肥料学报, 2012, 18(6):1336-1342.
[21] 陈鸽, 李祖胜, 李中希, 等. 播种量、施氮量和氮肥运筹对直播杂交稻产量及干物质生产的影响. 杂交水稻, 2020, 35(6):43-48.
[22] 付春霞, 张元珍, 王衍安, 等. 缺锌胁迫对苹果叶片光合速率及叶绿素荧光特性的影响. 中国农业科学, 2013, 46(18):3826-3833.
[23] 张凯岳. 锌对水稻碳酸酐酶和光合作用的调节作用研究. 武汉:华中农业大学, 2015.
[24] 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响. 农业资源与环境学报, 2020, 37(5):736-743.
[25] 刘雪琴. 纳米ZnO/AM真菌对玉米的生物效应及作用机理研究. 重庆:西南大学, 2015.
[26] 李琳慧. 纳米TiO2对土壤氮转化相关微生物和酶的影响. 长春:吉林大学, 2015.
[27] 王小燕, 马国辉, 狄浩, 等. 纳米增效尿素对水稻产量及氮肥农学利用率的影响. 植物营养与肥料学报, 2010, 16(6):1479-1485.
[28] 孙耀琴, 申聪聪, 葛源. 典型纳米材料的土壤微生物效应研究进展. 生态毒理学报, 2016, 11(5):2-13.
[29] 曹际玲, 冯有智, 林先贵. 人工纳米材料对植物-微生物影响的研究进展. 土壤学报, 2016, 53(1):1-11.
[30] García-Gómez C, Obrador A, González D, et al. Comparative effect of ZnO NPs,ZnO bulk and ZnSO4 in the antioxidant defenses of two plant species growing in two agricultural soils under greenhouse conditions. Science of the Total Environment, 2017, 589(6):11-24.
doi: 10.1016/j.scitotenv.2017.02.153
[31] Josko I, Oleszczuk P, Futa B. The effect of inorganic nanoparticles (ZnO,Cr2O3,CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma, 2014, 6:528-537.
[32] 李贵莲, 陈日远, 刘厚诚, 等. 纳米胶片处理对生菜生长及元素吸收的影响. 江苏农业科学, 2015, 43(11):237-238,243.
[33] 陈丁, 郑爱榕, 马春宇. 纳米氧化锌和二氧化硅对海水中磷酸根的吸附. 科技创新与应用, 2017, 11(27):174-175,179.
[34] 梁振凯, 郭聪颖, 王彩芝, 等. 氮锌配施促进小麦根系形态建成及其生理活性提高. 植物营养与肥料学报, 2020, 26(5):826-839.
[35] 杨习文, 宋淼, 李秋杰, 等. 氮锌配施对小麦锌转运、分配与累积的影响. 应用生态学报, 2020, 31(1):148-156.
doi: 10.13287/j.1001-9332.202001.027
[36] Siddiqui Z A, Parveen A, Ahmad L, et al. Effects of graphene oxide and zinc oxide nanoparticles on growth,chlorophyll,carotenoids,proline contents and diseases of carrot. Scientia Horticulturae, 2019, 249(4):374-382.
doi: 10.1016/j.scienta.2019.01.054
[37] Wang X P, Li Q Q, Pei Z M, et al. Effects of zinc oxide nanoparticle on the growth,photosynthetic traits,and antioxidative enzymes in tomato plants. Biologia Plantarum, 2018, 62(4):801-808.
doi: 10.1007/s10535-018-0813-4
[1] 周宇娇, 张伟杨, 杨建昌. 高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍的研究进展[J]. 作物杂志, 2022, (4): 1–8
[2] 郑思怡, 杨晔, 宋远辉, 花芹, 林泉祥, 张海涛, 程治军. 水稻甜质胚乳突变体m5788的鉴定及基因定位[J]. 作物杂志, 2022, (4): 14–21
[3] 王元元, 谷子寒, 陈平平, 易镇邪. 镉污染稻田玉米对水稻的季节性替代种植可行性研究[J]. 作物杂志, 2022, (4): 187–192
[4] 张海鹏, 陈志青, 王锐, 卢豪, 崔培媛, 杨艳菊, 张洪程. 氮肥配施纳米镁对水稻产量、品质和氮肥利用率的影响[J]. 作物杂志, 2022, (4): 255–261
[5] 董伟欣, 张月辰. 水氮互作对不同小麦品种生理参数及产量形成的影响[J]. 作物杂志, 2022, (3): 125–133
[6] 高捷, 李思宇, 成大宇, 张杏雨, 顾希, 刘立军. 缓控释肥对水稻产量与品质影响的研究进展[J]. 作物杂志, 2022, (3): 20–26
[7] 杜海萌, 韦还和, 余清源, 戴其根. 水稻叶面肥研究的应用进展与展望[J]. 作物杂志, 2022, (3): 33–38
[8] 成大宇, 刘昆, 高捷, 张杏雨, 顾希, 刘立军. 养分和水分管理对稻米香味影响的研究进展[J]. 作物杂志, 2022, (2): 22–27
[9] 韩丽君, 薛张逸, 谢昊, 顾骏飞. 干湿交替灌溉与硝化抑制剂对水稻产量及土壤性状的影响[J]. 作物杂志, 2022, (2): 222–229
[10] 刘梦红, 王志君, 李红宇, 赵海成, 吕艳东. 施肥方式和施氮量对寒地水稻产量、品质及氮肥利用的影响[J]. 作物杂志, 2022, (1): 102–109
[11] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展[J]. 作物杂志, 2022, (1): 11–19
[12] 龙瑞平, 张朝钟, 戈芹英, 万卫东, 王勤, 李贵勇, 夏琼梅, 朱海平, 杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析[J]. 作物杂志, 2022, (1): 124–129
[13] 崔士友, 张洋, 翟彩娇, 董士琦, 张蛟, 陈澎军, 韩继军, 戴其根. 复垦滩涂微咸水灌溉下粳稻产量和品质的表现[J]. 作物杂志, 2022, (1): 137–141
[14] 谢慧敏, 吴可, 刘文奇, 韦国良, 陆献, 李壮林, 韦善清, 梁和, 江立庚. 海藻肥与微生物菌剂部分替代化肥对水稻产量及其构成因素的影响[J]. 作物杂志, 2022, (1): 161–166
[15] 段琉颖, 吴婷, 李霞, 谢建坤, 胡标林. 水稻细胞质雄性不育及其育性恢复基因的研究进展[J]. 作物杂志, 2022, (1): 20–30
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!