作物杂志,2022, 第6期: 152–158 doi: 10.16035/j.issn.1001-7283.2022.06.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

甜菜幼苗光合生理对干旱胁迫的响应

尹希龙1,2(), 石杨1,2, 李王胜1,2, 兴旺1,2()   

  1. 1黑龙江大学国家甜菜种质中期库,150080,黑龙江哈尔滨
    2黑龙江大学现代农业与生态环境学院,150080,黑龙江哈尔滨
  • 收稿日期:2022-08-30 修回日期:2022-10-11 出版日期:2022-12-15 发布日期:2022-12-21
  • 通讯作者: 兴旺
  • 作者简介:尹希龙,研究方向为甜菜种质资源鉴定,E-mail:2567102543@qq.com
  • 基金资助:
    国家作物种质资源库“甜菜分库运行服务”(NCGRC-2021-017);农业农村部“甜菜种质资源的收集、鉴定、编目、繁种与入库(圃)保存”(19210157);农业农村部“普查收集甜菜种质资源鉴定评价与编目入库”(19210911);农业农村部“甜菜种质资源安全保存”(19211031);国家糖料产业技术体系(CARS-170102);黑龙江省普通本科高等学校青年人才创新培养计划(UNPYSCT-2020014)

Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage

Yin Xilong1,2(), Shi Yang1,2, Li Wangsheng1,2, Xing Wang1,2()   

  1. 1National Medium-Term Repository of Sugar Beet Germplasm, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2022-08-30 Revised:2022-10-11 Online:2022-12-15 Published:2022-12-21
  • Contact: Xing Wang

摘要:

干旱胁迫是抑制甜菜生长发育和影响产量的重要非生物因素。以耐旱型甜菜种质依安一号(V1)和干旱敏感型种质92011/1-6/1(V2)为试验材料,探讨不同耐旱品种甜菜幼苗光合生理对干旱胁迫的响应。研究了干旱胁迫对甜菜幼苗生长发育、总叶绿素含量和表观光合指标的影响。结果表明,干旱胁迫下2种甜菜幼苗的茎粗、根长、株高、叶鲜重、根鲜重、叶干重和根干重均呈下降趋势,V1下降幅度不明显且各指标降低幅度均小于V2;干旱胁迫降低了2种甜菜幼苗的叶绿素含量,叶绿素含量在第7天降到最低,且V1的含量明显高于V2;干旱胁迫使甜菜幼苗的净光合速率、蒸腾速率、叶片气孔导度和胞间CO2浓度显著下降,V1受到的影响比V2要小。不同耐旱性甜菜品种对干旱胁迫的响应机制存在一定差异,可以进一步分析其抗旱能力,为甜菜的育种、抗逆栽培和稳产提供理论依据。

关键词: 甜菜, 干旱胁迫, 光合生理

Abstract:

Drought stress is an important abiotic factor that inhibits the growth and development of sugar beet and affects yield. The drought-tolerant sugar beet germplasm Yi'an No.1 (V1) and the drought-sensitive germplasm 92011/1-6/1 (V2) were used as test materials to investigate the photosynthetic physiological responses of sugar beet seedlings of different drought-tolerant varieties to drought stress. The effects of drought stress on the growth and development, chlorophyll content, and apparent photosynthesis of sugar beet seedlings were investigated. The results showed that the stem diameter, root length, plant height, leaf fresh weight, root fresh weight, leaf dry weight, and root dry weight of the two sugar beet seedlings decreased under drought stress, and the decrease in V1 was less pronounced than V2, and the decrease in V1 was smaller than V2. The net photosynthetic rate, transpiration rate, leaf stomatal conductance and intercellular CO2 concentration of sugar beet seedlings were significantly reduced by drought stress, and V1 was less affected than V2. The response mechanisms of different drought-tolerant sugar beet varieties to drought stress were somewhat different, which could further analyze their drought resistance and provide a theoretical basis for breeding, stress-resistant cultivation and stable yield of sugar beet.

Key words: Sugar beet, Drought stress, Photosynthetic physiology

表1

甜菜幼苗表型指标

时间
Time (d)
处理
Treatment
品种
Variety
茎粗
Stem
diameter (cm)
株高
Plant
height (cm)
根长
Root length
(cm)
叶鲜重
Leaf fresh
weight (g)
根鲜重
Root fresh
weight (g)
叶干重
Leaf dry
weight (g)
根干重
Root dry
weight (g)
2 CK V1 4.07±0.11a 16.33±0.85a 25.33±0.62a 4.62±0.09a 1.83±0.08a 0.66±0.03a 0.17±0.00a
V2 3.91±0.07a 14.67±0.24a 25.00±0.41a 4.48±0.08a 1.81±0.05a 0.61±0.02ab 0.16±0.00a
DS V1 3.85±0.10a 15.33±0.24a 24.17±0.62a 4.41±0.14a 1.67±0.06a 0.55±0.02b 0.17±0.00a
V2 3.25±0.04b 12.67±0.62b 21.33±0.85b 3.40±0.11b 1.36±0.04b 0.44±0.02c 0.15±0.00b
5 CK V1 5.89±0.07a 20.43±0.76a 31.73±0.61a 12.94±0.57a 4.08±0.51a 0.90±0.06a 0.28±0.01a
V2 5.75±0.06a 19.17±0.24a 30.50±0.41a 13.00±0.72a 3.59±0.18a 0.85±0.02a 0.27±0.02a
DS V1 3.56±0.06b 13.50±0.41b 22.17±0.62b 4.18±0.12b 1.41±0.05b 0.36±0.02b 0.15±0.00b
V2 2.89±0.04c 10.00±0.41c 17.00±0.41c 2.94±0.09b 1.02±0.09b 0.19±0.02c 0.13±0.00b
7 CK V1 8.79±0.18a 24.33±0.47a 37.00±0.82a 16.75±0.53a 5.98±0.13a 1.69±0.10a 0.43±0.02a
V2 8.73±0.18a 23.67±0.24a 36.17±0.62a 16.55±0.17a 5.93±0.10a 1.65±0.07a 0.42±0.02a
DS V1 3.35±0.11b 11.83±0.34b 20.33±0.85b 4.01±0.13b 1.25±0.06b 0.24±0.03b 0.14±0.00b
V2 2.46±0.06c 6.00±0.41c 13.00±0.41c 2.50±0.13c 0.76±0.06c 0.14±0.01b 0.07±0.01c

图1

正常水分条件下甜菜幼苗叶片总叶绿素含量 不同小写字母表示差异显著(P < 0.05),下同

图2

干旱胁迫下甜菜幼苗叶片总叶绿素含量

图3

不同水分条件下V1甜菜幼苗叶片总叶绿素含量

图4

不同水分条件下V2甜菜幼苗叶片总叶绿素含量

表2

甜菜幼苗叶片表观光合指标

时间Time (d) 处理Treatment 品种Variety Pn [μmol/(m2·s)] Tr [mmol/(m2·s)] Gs [mmol/(m2·s)] Ci (μmol/mol)
2 CK V1 20.51±0.22a 1.24±0.07a 70.94±4.14bc 862.77±30.84a
V2 17.90±0.24b 1.35±0.23a 94.21±23.87ab 636.90±16.52b
DS V1 18.58±0.13c 1.49±0.09a 111.60±8.34a 440.97±1.13c
V2 11.68±0.18d 0.75±0.01b 38.80±1.22c 317.57±15.77d
5 CK V1 25.14±0.02a 1.72±0.16a 148.92±33.20a 900.27±23.73a
V2 24.28±1.18a 1.81±0.19a 170.69±20.55a 864.90±47.15a
DS V1 17.13±0.04b 0.69±0.03b 36.49±2.57b 406.00±43.93b
V2 6.18±0.19c 0.36±0.02c 17.99±1.12b 259.97±12.42c
7 CK V1 31.51±0.08a 2.56±0.02a 454.71±13.95a 1336.70±66.56a
V2 30.03±0.08b 1.91±0.15b 223.28±43.64b 1121.30±96.12b
DS V1 15.43±0.10c 0.57±0.01c 35.67±0.55c 380.13±16.82c
V2 1.04±0.08d 0.20±0.01d 8.99±0.38c 173.90±7.45d
[1] 梅书洋, 何敏敏, 耿贵, 等. 外源钙对干旱胁迫下甜菜幼苗生长的影响. 中国糖料, 2022, 44(3):34-40.
[2] 李志, 薛姣, 耿贵, 等. 逆境胁迫下甜菜生理特性的研究进展. 中国农学通报, 2021, 37(24):39-47.
[3] 陈润仪, 贺泽霖, 贾也纯, 等. 干旱胁迫对甜菜生长的影响及甜菜抗旱育种研究进展. 中国糖料, 2021, 43(3):54-60.
[4] 陈艺文, 李用财, 余凌羿, 等. 中国三大主产区甜菜糖业发展分析. 中国糖料, 2017, 39(4):74-76.
[5] 崔毅, 吴然, 王春. 中国干旱区水资源利用与经济增长关系研究——以宁夏回族自治区为例. 哈尔滨工业大学学报:社会科学版, 2018, 20(2):135-140.
[6] 唐利华, 樊华, 李阳阳, 等. 甜菜叶片、根系含水量及根系活力对干旱胁迫的反应. 新疆农垦科技, 2019, 42(1):8-10.
[7] Taleghani D, Rajabi A, Hemayati S S, et al. Improvement and selection for drought-tolerant sugar beet (Beta vulgaris L.) pollinator lines. Results in Engineering, 2022, 13:100367.
doi: 10.1016/j.rineng.2022.100367
[8] 邹利茹, 张福顺, 刘乃新, 等. 甜菜干旱胁迫响应研究进展. 中国糖料, 2021, 43(1):36-44.
[9] Zhang Z, Hu M, Xu W, et al. Understanding the molecular mechanism of anther development under abiotic stresses. Plant Molecular Biology, 2021, 105(1):1-10.
doi: 10.1007/s11103-020-01074-z
[10] Yoon Y, Seo D H, Shin H, et al. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy, 2020, 10(6):788.
doi: 10.3390/agronomy10060788
[11] Rhaman M S, Imran S, Karim M, et al. 5-aminolevulinic acid- mediated plant adaptive responses to abiotic stress. Plant Cell Reports, 2021, 40(8):1451-1469.
doi: 10.1007/s00299-021-02690-9
[12] 孙萌, 尚忠海, 沈植国, 等. 植物对干旱胁迫响应的研究进展. 河南林业科技, 2019, 39(4):1-3.
[13] 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 2019, 21(2):19-25.
doi: 10.13304/j.nykjdb.2018.0115
[14] 温琦, 赵文博, 张幽静, 等. 植物干旱胁迫响应的研究进展. 江苏农业科学, 2020, 48(12):11-15.
[15] 沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展——从表型到分子. 生物技术进展, 2017, 7(3):169-176.
[16] Gechev T, Petrov V. Reactive oxygen species and abiotic stress in plants. International Journal of Molecular Sciences, 2020, 21 (20):7433.
doi: 10.3390/ijms21207433
[17] 王克哲, 李思忠, 杜亚敏, 等. 干旱胁迫对甜菜块根膨大期光合光响应特性的影响. 新疆农业科学, 2020, 57(3):434-441.
doi: 10.6048/j.issn.1001-4330.2020.03.006
[18] 李思忠, 高卫时, 张立明, 等. 干旱对甜菜叶丛期光系统Ⅱ及光合作用的影响. 草业科学, 2021, 38(8):1548-1558.
[19] 张净, 王锦霞, 郭萌萌, 等. 甜菜幼苗对干旱胁迫的适应机制. 中国农学通报, 2020, 36(32):1-7.
[20] 王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 1900.
[21] 石建福, 施圣高, 王新其, 等. 播期、播量对大麦‘花22’产量及构成因素的影响. 农学学报, 2014, 4(12):8-11.
[22] 王新军, 阎世江. 干旱胁迫对番茄幼苗生理特性的影响. 中国瓜菜, 2022, 35(6):76-80.
[23] Karagoz H, Cakmakci R, Hosseinpour A, et al. Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits rhizobacteria. Applied Ecology and Environmental Research, 2018, 16(5):6801-6813.
[24] Fugate K K, Lafta A M, Eide J D, et al. Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. Journal of Agronomy and Crop Science, 2018, 204(6):566-576.
doi: 10.1111/jac.12286
[25] 徐明远, 王谦博, 郭盛磊, 等. 干旱胁迫对刺五加生长以及光合生理参数的影响. 中国实验方剂学杂志, 2021, 27(1):181-187.
[26] 李剑威, 晏舒蕾, 黄元城, 等. 薄壳山核桃幼苗对干旱胁迫的生理生化响应. 核农学报, 2020, 34(10):2326-2334.
doi: 10.11869/j.issn.100-8551.2020.10.2326
[27] Wang R, Li X G, Li S P, et al. Changes in seedling photosynthetic physiology characteristics of musa varieties under drought stress. Journal of Southwest Forestry University, 2010, 30(4):44-49.
[28] 曾继娟, 朱强, 岑晓斐, 等. 胡枝子幼苗对干旱胁迫的生理响应. 北方农业学报, 2022, 50(2):53-60.
doi: 10.12190/j.issn.2096-1197.2022.02.07
[29] Wang N, Chen H, Wang L. Physiological acclimation of Dicranostigma henanensis to soil drought stress and rewatering. Acta Societatis Botanicorum Poloniae, 2021, 90:907.
doi: 10.5586/asbp.907
[30] Mukami A, Ngetich A, Mweu C, et al. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiology and Molecular Biology of Plants, 2019, 25(4):837-846.
doi: 10.1007/s12298-019-00679-z pmid: 31402813
[31] 韩凯虹, 刘玉华, 张继宗, 等. 水分对甜菜光合及叶绿素荧光特性的影响. 农业资源与环境学报, 2015, 32(5):463-470.
[32] Wang X, Xia J B, Cao X B. Physiological and ecological characteristics of periploca sepium bunge under drought stress on shell sand in the Yellow River delta of China. Scientific Reports, 2020, 10(1):1-11.
doi: 10.1038/s41598-019-56847-4
[33] Liu J, Deng J L, Tian Y. Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress. Phytochemistry, 2020, 171:112226.
doi: 10.1016/j.phytochem.2019.112226
[34] Li W T, Ning P, Wang F, et al. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress. The Journal of Applied Ecology, 2020, 31(5):1543-1550.
[35] 李丽杰, 顾万荣, 孟瑶, 等. 干旱胁迫下亚精胺对玉米幼苗抗旱性影响的生理生化机制. 应用生态学报, 2018, 29(2):554-564.
[36] Khalvandi M, Siosemardeh A, Roohi E, et al. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 2021, 7(1):e05908.
doi: 10.1016/j.heliyon.2021.e05908
[37] Islam M J, Kim J W, Begum M K, et al. Physiological and biochemical changes in sugar beet seedlings to confer stress adaptability under drought condition. Plants, 2020, 9(11):1511.
doi: 10.3390/plants9111511
[38] 陈芳, 谷晓平, 于飞, 等. 贵州辣椒光合生理特性对干旱胁迫的响应. 作物杂志, 2021(5):160-165.
[39] 吴海霞, 赖淼, 孙亚卿, 等. 甜菜幼苗叶片对干旱胁迫的生理响应及其蛋白质组学分析. 植物生理学报, 2022, 58(5):835-843.
[40] 曹兵, 宋丽华, 谢应吉. 土壤干旱胁迫对臭椿苗木生理指标的影响. 东北林业大学学报, 2008, 36(9):11-13.
[1] 张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响[J]. 作物杂志, 2022, (6): 234–240
[2] 李王胜, 王雪倩, 尹希龙, 石杨, 刘大丽, 谭文勃, 兴旺. 甜菜种质资源苗期耐旱性综合评价[J]. 作物杂志, 2022, (6): 54–60
[3] 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214–220
[4] 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143–148
[5] 谭秦亮, 程琴, 潘成列, 朱鹏锦, 李佳慧, 宋奇琦, 农泽梅, 周全光, 庞新华, 吕平. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022, (3): 161–167
[6] 杨奥军, 常巧玲, 王鹏, 王芳, 高妍婷, 周广阔, 宋小佳, 韦恩成. 外源5-ALA对干旱胁迫下玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2022, (3): 194–199
[7] 云菲, 任天宝, 殷全玉, 靳双珍, 郑聪, 金磊, 李静静, 刘国顺, 杨喜田. 叶面喷施钙素对光胁迫条件下烤烟光合生理特性的调控效应[J]. 作物杂志, 2022, (2): 143–152
[8] 蔡琪琪, 王堽, 董寅壮, 於丽华, 王宇光, 耿贵. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022, (1): 130–136
[9] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[10] 李安, 舒健虹, 刘晓霞, 蒙正兵, 王小利, 赵德刚. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响[J]. 作物杂志, 2021, (6): 217–223
[11] 陈芳, 谷晓平, 于飞, 胡家敏, 左晋, 胡欣欣, 刘宇鹏, 胡锋. 贵州辣椒光合生理特性对干旱胁迫的响应[J]. 作物杂志, 2021, (5): 160–165
[12] 吕伟, 任果香, 韩俊梅, 文飞, 王若鹏, 刘文萍. 干旱胁迫对芝麻幼苗生理生化指标的影响[J]. 作物杂志, 2021, (5): 172–175
[13] 张婷, 张博文, 李国龙, 曹阳, 李悦, 张少英. 磷酸二铵施用量及方式对甜菜光合性能和产量的影响[J]. 作物杂志, 2021, (5): 187–193
[14] 丁刘慧子, 邳植, 吴则东. 甜菜品种SSR指纹图谱的构建及遗传多样性分析[J]. 作物杂志, 2021, (5): 72–78
[15] 裴志超, 周继华, 徐向东, 兰宏亮, 王俊英, 郎书文, 张伟强. 干旱处理对不同玉米品种叶片光合速率和抗氧化特性及产量的影响[J]. 作物杂志, 2021, (5): 95–100
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!