作物杂志,2023, 第1期: 152–157 doi: 10.16035/j.issn.1001-7283.2023.01.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同形态硒及用量对幼苗期谷子生长与生理的影响

边淑惠(), 邢国芳(), 梁昕, 张舒玮, 王佳宁, 叶昊雨   

  1. 山西农业大学农学院,030800,山西太谷
  • 收稿日期:2021-11-02 修回日期:2021-12-23 出版日期:2023-02-15 发布日期:2023-02-22
  • 通讯作者: 邢国芳,主要从事杂粮种质资源创新与利用研究,E-mail:xingguofang9596@sina.com
  • 作者简介:边淑惠,主要从事作物高效栽培理论与技术研究,E-mail:1549442754@qq.com
  • 基金资助:
    山西省高等学校大学生创新创业训练项目(202010113003);山西省重点研发计划项目(201803D221008-4)

Effects of Different Forms Selenium and Dosage on Foxtail Millet Growth and Physiology at Seedling Stage

Bian Shuhui(), Xing Guofang(), Liang Xin, Zhang Shuwei, Wang Jianing, Ye Haoyu   

  1. College of Agronomy, Shanxi Agricultural University, Taigu 030800, Shanxi, China
  • Received:2021-11-02 Revised:2021-12-23 Online:2023-02-15 Published:2023-02-22

摘要:

为探究不同形态硒及用量对谷子生长和抗性的影响,选用0.0、0.1、0.5、1.0、10.0mmol/L亚硒酸钠和纳米硒,通过水培试验研究不同形态硒浓度对谷子株高、茎粗、根系、硒含量和酶活性的影响。结果表明,2种形态硒随着浓度的升高,株高均呈先升高后降低的趋势;亚硒酸钠对茎粗的影响呈开口向下的抛物线趋势,纳米硒对茎粗有显著的抑制作用。亚硒酸钠对根长和根冠比的影响呈先增加后降低的趋势;低浓度纳米硒对根长影响不显著,高浓度纳米硒对根长有显著的抑制作用;纳米硒对谷子根冠比抑制作用明显。2种形态硒均可提高谷子的硒含量;2种形态硒及其不同浓度对超氧化物歧化酶、过氧化氢酶活性及蛋白质含量均有显著影响,对过氧化物酶活性影响不显著。结合Circos-弦图、谷子株高、茎粗、根系、硒含量和酶活性等试验结果,得出喷施0.1mmol/L的纳米硒溶液对谷子生长、硒含量及酶活性提高效果显著,适宜在谷子种植中应用。

关键词: 亚硒酸钠, 纳米硒, 硒含量, 酶活性, 谷子

Abstract:

In order to explore the effects of different forms selenium and dosage on foxtail millet growth and resistance, 0.0, 0.1, 0.5, 1.0 and 10.0mmol/L sodium selenite and nano selenium were selected to carry out hydroponic culture experiment on foxtail millet, and to explore the effects of different forms and concentrations of selenium on plant height, stem diameter, root system, selenium content and enzyme activity of foxtail millet. The results showed that, with the increase of selenium concentration, the plant height increased first and then decreased. The effects of sodium selenite on stem diameter showed a parabola trend, and nano selenium had a significant inhibitory effects on stem diameter. The effects of sodium selenite on root length and root shoot ratio increased first and then decreased. Low concentration of nano selenium had no significant effects on root length, while high concentration of nano selenium had a significant inhibitory effects on root length. Nano selenium significantly inhibited the root shoot ratio of foxtail millet. Both forms of selenium could increase the selenium content of foxtail millet. The two forms and concentrations of selenium had significant effects on SOD, CAT activities and protein content, but had no significant effects on POD activity. Combined with the experimental results of Circos-string diagram, plant height, stem diameter, root, selenium content and enzyme activity, it was concluded that spraying 0.1mmol/L nano-selenium solution significantly improved foxtail millet growth, selenium content and enzyme activity, and was suitable for the application in foxtail millet planting.

Key words: Sodium selenite, Nano selenium, Selenium content, Enzyme activity, Foxtail millet

图1

不同形态硒及用量对谷子株高和茎粗的影响 0不同小写和大写字母分别表示施亚硒酸钠和纳米硒时不同浓度各处理间差异显著,下同

图2

不同形态硒及用量对谷子根长、根冠比的影响

图3

不同形态硒及用量对谷子硒含量的影响

图4

不同形态硒及用量对谷子根系酶活性及蛋白质含量的影响

图5

亚硒酸钠和纳米硒处理下指标间相关性 PH:株高;SD:茎粗;RL:根长;R/S:根冠比;SC:硒含量;PC:蛋白质含量。“*”表示P < 0.05水平下显著相关。下同

图6

处理与指标间转移关系

[1] 黄太庆, 江泽普, 廖青, 等. 外源硒与不同物料配施对水稻硒素营养及硒利用率的影响. 土壤, 2019, 51(2):269-278.
[2] 晋永芬, 高炳德. 叶面硒肥对春小麦的富硒效应及硒素吸收分配的影响. 中国土壤与肥料, 2018(2):113-117.
[3] 张城铭, 周鑫斌. 不同施硒方式对水稻硒利用效率的影响. 土壤学报, 2019, 56(1):186-194.
[4] 崔纪菡, 刘猛, 赵宇, 等. 硒的不同价态和浓度对谷子硒含量和生理指标的影响. 山西农业科学, 2019, 47(7):1143-1148.
[5] Kumarathilaka P, Seneweera S, Meharg A, et al. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment, 2018, 642 (15):485-496.
doi: 10.1016/j.scitotenv.2018.06.030
[6] Godina R C, Foroughbakhch R, Mendoza A B. Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. Journal of Agricultural Science, 2018, 18(1):233-244.
[7] Hawrylak-Nowak B, Dresler S, Rubinowska K, et al. Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. Plant Physiology and Biochemistry, 2018, 127:446-456.
doi: S0981-9428(18)30176-1 pmid: 29689508
[8] Djanaguiraman M, Devi D D, Shanker A K, et al. Selenium-an antioxidative protectant in soybean during senescence. Plant and Soil, 2005, 272(1/2):77-86.
doi: 10.1007/s11104-004-4039-1
[9] Cappa J J, Yetter C, Fakra S, et al. Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny,physiology and X-ray microprobe analysis. The New Phytologist, 2015, 205(2):583-595.
doi: 10.1111/nph.13071
[10] 丁运韬, 程煜, 张体彬, 等. 利用HYDRUS-2D模拟膜下滴灌玉米农田深层土壤水分动态与根系吸水. 干旱地区农业研究, 2021, 39(3):23-32.
[11] 史丽娟, 白文斌, 曹昌林, 等. 外源硒对高粱产量、籽粒硒含量及品质的影响. 作物杂志, 2020(3):191-196.
[12] 程伯容, 聚山见, 岳淑蓉, 等. 硒粮与人体硒水平. 中国环境科学, 1982, 2(5):28-31.
[13] Liu X, Yang Y, Deng X, et al. Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Environmental and Experimental Botany, 2017, 135:13-20.
doi: 10.1016/j.envexpbot.2016.12.005
[14] Godina R C, Foroughbakhch R, Mendoza A B. Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. Journal of Agricultural Science, 2018, 18(1):233-244.
[15] Balakhnina T I, Nadezhkina E S. Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russian Journal of Plant Physiology, 2017, 64(2):215-223.
doi: 10.1134/S1021443717010022
[16] Idrees M, Cheema S A, Faroq M, et al. Selenium nutrition for yield enhancement and grain biofortification of wheat through different application methods. International Journal of Agriculture and Biology, 2018, 20(8):1701-1709.
[17] Stroud J L, Broadley M R, Foot I, et al. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil, 2010, 332(1/2):19-30.
doi: 10.1007/s11104-009-0229-1
[18] Ali F, Peng Q, Wang D, et al. Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 2017, 24:8315-8325.
doi: 10.1007/s11356-017-8512-9
[19] 陈思杨, 江荣风, 李花粉. 苗期小麦和水稻对硒酸盐/亚硒酸盐的吸收及转运机制. 环境科学, 2011, 32(1):284-289.
[20] 朱芹. 外源褪黑素和热处理对冷藏水蜜桃冷害发生的影响. 扬州:扬州大学, 2020.
[21] Lin Y, Lin H, Zhang S, et al. The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biology and Technology, 2014, 96:42-48.
doi: 10.1016/j.postharvbio.2014.05.001
[22] Kumur U, Kaviray M, Panneerselvam P, et al. Ascorbic acid formulation for survivability and diazotrophic efficacy of Azotobacter chroococcum Avi2 (MCC 3432) under hydrogen peroxide stress and its role in plant-growth promotion in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2019, 139:419-427.
doi: 10.1016/j.plaphy.2019.04.003
[1] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷农艺性状、产量及氮素利用的影响[J]. 作物杂志, 2023, (1): 58–67
[2] 范端阳, 尹美强, 温银元, 郭之瑶, 温艳杰, 王钰麒, 孙敏, 高志强. 硝铵氮源配比对谷子苗期生长及氮素利用的影响[J]. 作物杂志, 2023, (1): 96–102
[3] 赵小琴, 贾瑞玲, 刘军秀, 刘彦明, 文殷花, 师丽丽, 张娟宁, 马宁. 120份谷子种质资源的农艺性状表现和遗传多样性分析[J]. 作物杂志, 2022, (6): 61–69
[4] 李志华, 穆婷婷, 李爱军. 生育进程相近的谷子杂交种两系亲本的选育及其杂种优势分析[J]. 作物杂志, 2022, (6): 75–81
[5] 史关燕, 王娟菲, 麻慧芳, 赵雄伟. 谷子杂交种产量与主要农艺性状的相关性及回归分析[J]. 作物杂志, 2022, (6): 82–87
[6] 马珂, 冯雷, 赵夏童, 张丽光, 原向阳, 董淑琦, 郭平毅, 宋喜娥. 播距和播量对张杂谷10号生长特性及产量的影响[J]. 作物杂志, 2022, (4): 172–178
[7] 周武先, 李梦歌, 谭旭辉, 汪友元, 王华, 蒋小刚, 段媛媛, 张美德. 播种密度对不同季节半夏生长、品质及土壤酶活性的影响[J]. 作物杂志, 2022, (4): 205–213
[8] 吕建珍, 任莹, 王宏勇, 张庭军, 马建萍, 赵凯. 264份谷子主要育成品种(系)表型多样性综合评价[J]. 作物杂志, 2022, (4): 22–31
[9] 李秉华, 王贵启, 师志刚, 刘小民, 许贤, 赵铂锤, 程汝宏. 谷子和杂草对氰氟草酯的敏感性[J]. 作物杂志, 2022, (4): 262–266
[10] 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143–148
[11] 程琴, 谭秦亮, 李佳慧, 朱鹏锦, 周全光, 欧克纬, 卢业飞, 吕平, 庞新华. 不同宿根年限甘蔗品种内源激素及酶活性分析[J]. 作物杂志, 2022, (3): 181–186
[12] 郭书亚, 尚赏, 汤其宁, 张艳, 卢广远. 不同轮耕方式与生物炭对土壤酶活性、土壤养分及小麦和玉米产量的影响[J]. 作物杂志, 2022, (3): 211–217
[13] 秦娜, 朱灿灿, 代书桃, 宋迎辉, 李君霞, 王春义. 谷子黄叶色突变体ylm-1的精细定位与功能分析[J]. 作物杂志, 2022, (3): 55–62
[14] 刘攀锋, 秦杰, 郝爽楠, 王丹立, 杨武德, 冯美臣, 宋晓彦. 硒肥浓度、施用时期和施肥方式对不同谷子品种产量和籽粒硒含量的影响[J]. 作物杂志, 2022, (2): 182–188
[15] 郭永新, 周浩, 孙鹏, 王雅情, 马珂, 李晓瑞, 董淑琦, 郭平毅, 原向阳. 种植方式对不同地区张杂谷10号抗倒伏特性及产量的影响[J]. 作物杂志, 2022, (2): 195–202
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!