作物杂志,2024, 第2期: 80–88 doi: 10.16035/j.issn.1001-7283.2024.02.010

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

秸秆还田年限及施磷水平对玉米根系生长和产量的影响

胡昊驰(), 王富贵(), 朱孔艳, 胡树平, 王猛, 王志刚, 孙继颖, 于晓芳, 包海柱(), 高聚林()   

  1. 内蒙古农业大学农学院,010018,内蒙古呼和浩特
  • 收稿日期:2023-01-29 修回日期:2023-03-30 出版日期:2024-04-15 发布日期:2024-04-15
  • 通讯作者: 包海柱,主要从事作物遗传育种与生理生态研究,E-mail:bhz2009@126.com;高聚林,主要从事作物生理生态及决策系统研究,E-mail:nmgaojulin@163.com
  • 作者简介:胡昊驰,主要从事玉米栽培生理生态研究,E-mail:hhc5179@163.com;|王富贵,主要从事玉米栽培生理研究,E-mail:fgwang2008@163.com
  • 基金资助:
    国家重点研发计划课题(2018YFD03008404);内蒙古自治区作物栽培与遗传改良重点实验室和农村部华北黄土高原地区作物栽培科学观测实验站(25204120)

Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize

Hu Haochi(), Wang Fugui(), Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu(), Gao Julin()   

  1. Agricultural College of Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
  • Received:2023-01-29 Revised:2023-03-30 Online:2024-04-15 Published:2024-04-15

摘要:

以先玉335为供试材料,采用两因素裂区设计,研究了不同秸秆还田年限[连续5年(5a)和1年(1a)秸秆全量深翻还田]及不同施磷水平[P2O5 0(P0)、45(P45)、90(P90)、135(P135)和180 kg/hm2(P180)]对玉米根系构型、菌根侵染状况、植株干重、磷素积累量和产量的影响。结果表明,5a较1a明显优化了玉米根系形态,促进了根系生长、菌根侵染以及植株干物质和磷素积累,使产量提高1.94%~7.15%;磷肥水平影响玉米的生长发育,还影响菌根侵染密度(m%)、丛枝丰富度(a%)和根系丛枝丰富度(A%),并在P90处理后开始明显降低,表明当施磷水平较高时,会严重抑制AM真菌的侵染。拔节期玉米根系、茎秆、叶片的干重分别在P90、P90和P135时达到最大值,与其他施磷处理相比增幅分别为1.31%~15.07%、0.05%~25.07%和7.61%~22.42%;磷素积累量分别在P135、P90和P135时达到峰值,与其他施磷处理相比增幅分别为11.09%~ 95.51%、10.77%~77.39%和3.91%~29.28%。成熟期玉米茎秆、叶片和籽粒的干重分别在P90、P135和P90时达到最大值,与其他施磷处理相比增幅分别为0.18%~19.25%、5.79%~30.60%和0.90%~10.47%;磷素积累量分别在P135、P135和P90时达到峰值,与其他磷处理相比增幅分别为5.16%~54.70%、13.18%~77.22%和3.99%~56.75%。各施磷处理玉米产量均较P0显著增加,P135产量最高。综上,连续5年秸秆全量深翻还田配施磷135 kg/hm2时,能够促进植株生长,玉米具有更强的养分吸收能力,产量显著提高。

关键词: 玉米, 秸秆还田, 施磷量, 根系生长, 菌根侵染, 产量

Abstract:

Xianyu 335 was used as the test material in this experiment, and a two-factor split-plot design was used to study the effects of straw returning years [5 years (5a) and 1 year of total straw deep ploughing (1a)] and phosphorus application levels [P2O5 0 (P0), 45 (P45), 90 (P90), 135 (P135) and 180 kg/ha (P180)] on root architecture, mycorrhizal colonization, plant dry weight, phosphorus accumulation and final yield of maize. The results showed that compared with 1a, 5a significantly optimized the root morphology of maize, promoted root growth, mycorrhizal infection and plant dry matter and phosphorus accumulation, and then increased the yield by 1.94%-7.15%. The level of phosphorus fertilizer affected the growth and development of maize, and also affected the mycorrhizal colonization density (m%), arbuscular richness (a%) and root arbuscular richness (A%), and these indexes began to decrease significantly after P90 treatment, indicating that when the phosphorus level was high, the infection of AM fungi would be seriously inhibited. The dry weights of roots, stalk and leaves of maize in jointing period reached the maximum at P90, P90 and P135, respectively, which increased by 1.31%-15.07%, 0.05%-25.07% and 7.61%-22.42% compared with other phosphorus treatments. The accumulation of phosphorus reached the peak at P135, P90 and P135, respectively, which increased by 11.09%-95.51%, 10.77%-77.39% and 3.91%-29.28% compared with other phosphorus treatments. The dry weight of stalk, leaves and grain of maize at mature period reached the maximum at P90, P135 and P90, respectively, and increased by 0.18%-19.25%, 5.79%-30.60% and 0.90%-10.47% compared with other phosphorus treatments. The accumulation of phosphorus reached the peak at P135, P135 and P90, which increased by 5.16%-54.70%, 13.18%-77.22% and 3.99%-56.75%, respectively, compared with other phosphorus treatments. Compared with P0, the maize yields of all P treatments increased significantly, and reached the highest at P135. In summary, when the total straw deep ploughing combined with 135 kg/ha phosphate fertilizer was applied for five consecutive years, maize had stronger nutrient absorption capacity, which could promote plant growth and significantly increase yield.

Key words: Maize, Straw returning, Phosphorus application rate, Root growth, Mycorrhizal colonization, Yield

表1

根系形态及根系菌根侵染状况在秸秆还田年限和施磷处理下的方差分析

变异来源
Sources of
variation
FF-value
总根长
Total root length
总根表面积
Total root surface area
总根体积
Total root volume
菌根侵染密度
(m%)
丛枝丰富度
(a%)
根系丛枝丰富度
(A%)
SRY 632.427** 147.198** 109.700** 1228.415** 121.868** 1469.118**
P 480.649** 31.032** 52.163** 336.514** 100.514** 221.513**
SRY×P 84.312** 4.337** 11.755** 104.200** 3.795* 88.872**

表2

组合间根系形态及根系菌根侵染状况的多重比较

处理
Treatment
总根长
Total root length (mm)
总根表面积
Total root surface area (cm2)
总根体积
Total root volume (cm3)
菌根侵染密度
(m%)
丛枝丰富度
(a%)
根系丛枝丰富度
(A%)
1a P0 1796.59f 542.71d 13.52f 24.70f 50.89c 13.88f
P45 1910.12e 619.22c 17.14cd 27.03de 66.58b 16.31e
P90 2912.27a 721.15b 17.49c 28.67d 69.90b 19.82c
P135 2267.34d 627.02c 16.09de 13.27g 54.43c 6.18g
P180 1804.64f 544.41d 15.92e 8.93h 40.44d 3.85h
5a P0 1901.09e 654.25c 15.46e 28.13d 69.11b 18.39d
P45 2530.34c 735.38b 19.24b 32.77c 75.33a 27.12a
P90 2980.03a 781.57a 19.50b 52.50a 77.09a 26.05ab
P135 2686.03b 816.50a 21.34a 35.77b 66.65b 25.67b
P180 2665.45b 697.71b 16.46cde 25.93ef 49.54c 18.32d

表3

根系干重和磷素积累量在秸秆还田年限和施磷处理下的方差分析

变异来源
Sources of
variation
FF-value
根系干重
Root dry weight
根部磷素积累量
Phosphorus accumulation in roots
SRY 79.17** 3854.82**
P 25.69** 514.43**
SRY×P 6.10** 111.17**

图1

秸秆还田年限和磷处理对根系干重和磷素积累量的影响 “*”和“**”分别表示相同磷水平下不同秸秆还田年限间的差异达显著(P < 0.05)和极显著(P < 0.01)水平,下同。

表4

地上部各器官干重和磷素积累量在秸秆还田年限和磷处理下的方差分析

指标
Index
部位
Position
拔节期Jointing stage 成熟期Mature stage
SRY P SRY×P SRY P SRY×P
干重Dry weight 茎秆 171.09** 43.54** 9.18** 492.12** 64.92** 8.31**
叶片 108.76** 87.88** 8.27** 7.12* 139.58** 1.63
籽粒 122.47** 96.47** 27.76**
磷素积累量Phosphorus accumulation amount 茎秆 307.70** 150.47** 4.83** 523.44** 81.53** 24.10**
叶片 254.74** 70.11** 7.80** 120.42** 178.63** 8.84**
籽粒 513.66** 508.33** 121.69**

图2

秸秆还田年限和磷处理对地上部各器官干重和磷素积累量的影响

表5

玉米产量及其构成因素在秸秆还田年限和磷处理下的方差分析

变异来源
Sources of
variation
FF-value
穗粒数
Grains
per ear
有效穗数
Effective
panicles
百粒重
100-grain
weight
产量
Yield
SRY 2.14 20.51** 0.01 44.53**
P 1.56 3.62* 0.84 19.25**
SRY×P 0.59 1.43 0.33 2.28

图3

秸秆还田年限和磷处理对产量及其构成因素的影响

表6

组合间玉米磷素吸收利用效率的多重比较

处理
Treatment
磷素吸收效率
PUPE (kg/kg)
磷素利用率
PUE (%)
磷素农学效率
PAE (kg/kg)
磷素偏生产力
PPFP (kg/kg)
1a P0
P45 0.92b 0.21b 8.20b 322.05a
P90 0.50d 0.14c 4.67cd 161.60c
P135 0.36f 0.12d 8.13b 112.74d
P180 0.22h 0.05f 2.46d 80.93e
5a P0
P45 0.97a 0.15c 5.46c 328.30a
P90 0.68c 0.27a 11.73a 173.15b
P135 0.42e 0.15c 8.87b 116.48d
P180 0.29g 0.08e 4.26cd 84.97e
[1] Yang C D, Lu S G. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Science of the Total Environment, 2022, 805:150325.
doi: 10.1016/j.scitotenv.2021.150325
[2] 于博, 徐松鹤, 任琴, 等. 秸秆还田研究进展及内蒙古玉米秸秆深翻还田现状. 作物杂志, 2022(2):6-15.
[3] 霍丽丽, 赵立欣, 孟海波, 等. 中国农作物秸秆综合利用潜力研究. 农业工程学报, 2019, 35(13):218-224.
[4] 郭斗斗, 黄绍敏, 张珂珂, 等. 有机无机外源磷素长期协同使用对潮土磷素有效性的影响. 植物营养与肥料学报, 2018, 24(6):1651-1659.
[5] 高日平, 赵思华, 刁生鹏, 等. 秸秆还田对黄土风沙区土壤微生物、酶活性及作物产量的影响. 土壤通报, 2019, 50(6):1370-1377.
[6] 赵雪淞, 宋王芳, 高欣, 等. 秸秆还田和耕作方式对花生土壤微生物量、酶活性和产量的影响. 中国土壤与肥料, 2020(3):126-132.
[7] 王嘉豪, 李廷亮, 黄璐, 等. 秸秆还田替代化肥对黄土旱塬小麦产量及水肥利用的影响. 水土保持学报, 2022, 36(3):236-243,251.
[8] 侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究. 中国农业科学, 2019, 52 (20):3573-3584.
doi: 10.3864/j.issn.0578-1752.2019.20.008
[9] Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3):997-1005.
doi: 10.1104/pp.111.175232 pmid: 21571668
[10] 曹宁, 陈新平, 张福锁, 等. 从土壤肥力变化预测中国未来磷肥需求. 土壤学报, 2007, 44(3):536-543.
[11] 陈晓影, 刘鹏, 程乙, 等. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响. 作物学报, 2019, 45 (10):1565-1575.
doi: 10.3724/SP.J.1006.2019.93005
[12] 潘浩男, 覃潇敏, 肖靖秀, 等. 不同磷水平下间作对红壤团聚体及有效磷特征的影响. 中国土壤与肥料, 2022(4):1-8.
[13] 王艳丽, 张富仓, 李菊, 等. 灌溉和施磷对河西地区春玉米生长、产量和磷素利用的影响. 西北农业学报, 2021, 30(9):1309-1320.
[14] 张锦滨, 王晓云, 孟圆, 等. 不同磷肥用量对水稻产量效益、磷肥利用率及土壤养分的影响. 中国农学通报, 2021, 37(32):96-101.
doi: 10.11924/j.issn.1000-6850.casb2021-0671
[15] 张淑彬, 王幼珊, 殷晓芳, 等. 不同施磷水平下AM真菌发育及其对玉米氮磷吸收的影响. 植物营养与肥料学报, 2017, 23 (3):649-657.
[16] 任云, 刘静, 李哲馨, 等. 玉米幼苗响应低铁胁迫的根系形态与干物质积累特征. 作物杂志, 2020(6):69-79.
[17] 张瑞富, 杨恒山, 范秀艳, 等. 施磷深度和深松对春玉米磷素吸收与利用的影响. 植物营养与肥料学报, 2018, 24(4):880-887.
[18] 吴启华, 刘晓斌, 张淑香, 等. 施用常规磷水平的80%可实现玉米高产、磷素高效利用和土壤磷平衡. 植物营养与肥料学报, 2016, 22(6):1468-1476.
[19] Sui P X, Tian P, Lian H L, et al. Straw incorporation management affects maize grain yield through regulating nitrogen uptake, water use efficiency, and root distribution. Agronomy, 2020, 10 (3):324.
doi: 10.3390/agronomy10030324
[20] Gao F, Zhao B, Dong S T, et al. Response of maize root growth to residue management strategies. Agronomy Journal, 2017, 110 (1):95-103.
doi: 10.2134/agronj2017.06.0307
[21] Luna L, Miralles I, Andrenelli M C, et al. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena, 2016, 143:256-264.
doi: 10.1016/j.catena.2016.04.013
[22] 李胜宝, 师俊杰, 何永美, 等. 丛枝菌根真菌对蚕豆秸秆降解及玉米养分和镉铅吸收的影响. 植物营养与肥料学报, 2021, 27(4):684-694.
[23] 田磊, 石少华, 张建峰, 等. 长期化肥施用与秸秆还田对玉米根部相关AMF和细菌的群落结构多样性的影响. 土壤与作物, 2017, 6(4):291-297.
[24] 慕平, 张恩和, 王汉宁, 等. 不同年限全量玉米秸秆还田对玉米生长发育及土壤理化性状的影响. 中国生态农业学报, 2012, 20(3):291-296.
[25] Chilundo M, Joel A, Wesstrm I, et al. Response of maize root growth to irrigation and nitrogen management strategies in semi-arid loamy sandy soil. Field Crops Research, 2017, 200:143-162.
doi: 10.1016/j.fcr.2016.10.005
[26] 隋鹏祥, 张心昱, 温学发, 等. 耕作方式和秸秆还田对棕壤土壤养分和酶活性的影响. 生态学杂志, 2016, 35(8):2038-2045.
[27] Adnane B, Noyce G L, Carlsson G, et al. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology, 2017, 120:179-188.
doi: 10.1016/j.apsoil.2017.08.011
[28] Rast H, Liedgens M, Sangakkara U R, et al. Early growth of crotalaria (Crotalaria juncea), Tithonia (Tithonia diversifolia), and maize (Zea mays) as affected by soil fertility and phosphorus fertilizer under pot and field conditions. Communications in Soil Science and Plant Analysis, 2010, 41(14):1655-1664.
doi: 10.1080/00103624.2010.488710
[29] 杨茂秋, 冯固, 白灯莎, 等. VA菌根对玉米吸收利用磷肥的影响. 土壤肥料, 1992(4):36-41.
[30] Wang X C, Deng X Y, Pu T, et al. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research, 2017, 204:12-22.
doi: 10.1016/j.fcr.2016.12.020
[31] 战秀梅, 彭靖, 李秀龙, 等. 耕作及秸秆还田年限对春玉米产量及土壤理化性状的影响. 华北农学报, 2014, 29(3):204-209.
doi: 10.7668/hbnxb.2014.03.037
[1] 潘越, 李思宇, 高捷, 沈炘垭, 刘立军. 秸秆及其还田方式对不同轮作模式下稻田土壤性质影响的研究进展[J]. 作物杂志, 2024, (2): 1–8
[2] 王罕, 郑德超, 田琴琴, 吴小京, 周文新, 易镇邪. 收获时期对早稻产量与镉积累分配特性的影响[J]. 作物杂志, 2024, (2): 105–112
[3] 孙通, 杨玉双, 马瑞琦, 朱英杰, 常旭虹, 董志强, 赵广才. 聚糠萘合剂和乙矮合剂对小麦抗倒伏能力、产量与品质的影响[J]. 作物杂志, 2024, (2): 113–121
[4] 孙悦颖, 刘景辉, 米俊珍, 赵宝平, 李英浩, 朱珊珊. 乳酸菌复合制剂对燕麦的促生作用研究[J]. 作物杂志, 2024, (2): 122–128
[5] 徐哲莉, 朱伟旗, 王立涛, 史峰, 韦志英, 王丽娜, 邱红伟, 张晓英, 李辉利. 灌水及叶面施氮对晚播小麦产量、品质及光合特性的影响[J]. 作物杂志, 2024, (2): 139–147
[6] 肖敏, 郭浪, 崔璨, 程周琦, 刘玉午, 卓乐, 吴思, 易镇邪. 磷肥运筹对机插双季稻产量构成与养分吸收利用的影响[J]. 作物杂志, 2024, (2): 178–188
[7] 解梦凡, 贾海江, 曲远凯, 农世英, 李俊霖, 王杰, 刘力玮, 闫慧峰. 种植密度和氮肥用量对百色烟区烤烟叶片发育及烟叶产量的影响[J]. 作物杂志, 2024, (2): 189–197
[8] 王怀苹, 杨明达, 张素瑜, 李帅, 关小康, 王同朝. 不同节水灌溉方式对夏玉米生长、产量及水分利用的影响[J]. 作物杂志, 2024, (2): 206–212
[9] 张磊, 董孔军, 何继红, 任瑞玉, 刘天鹏, 杨天育. 不同基因型糜子品种氮磷养分吸收差异研究[J]. 作物杂志, 2024, (2): 228–233
[10] 张倩, 任雯, 赵冰兵, 周秒依, 李韩帅, 刘亚, 杜何为. 玉米ZmMAPKKK21基因的克隆和生物信息学分析[J]. 作物杂志, 2024, (2): 30–39
[11] 秦碧蓉, 尤赛雅, 陈书融, 朱练峰, 孔亚丽, 朱春权, 田文昊, 张均华, 金千瑜, 曹小闯, 刘丽. 不同施氮水平对双季稻产量、氮素利用率及稻田氮素平衡的影响[J]. 作物杂志, 2024, (2): 89–96
[12] 罗晓颖, 房彦飞, 胡冬平, 唐江华, 徐文修, 王怀港. 播种方式和播量对干旱区旱地小麦土壤水分利用及产量的影响[J]. 作物杂志, 2024, (2): 97–104
[13] 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024, (1): 117–125
[14] 周镇磊, 刘建明, 曹东, 刘宝龙, 王东霞, 张怀刚. 不同燕麦品种草产量、农艺性状和饲草品质的比较[J]. 作物杂志, 2024, (1): 132–140
[15] 熊昕, 邓俊, 尚李岩, 盛添, 叶佳雨, 刘子琛, 黄礼英, 张运波. 氮钾肥互作对杂交稻产量和辐射利用效率的影响[J]. 作物杂志, 2024, (1): 166–173
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!