作物杂志,2024, 第1期: 117–125 doi: 10.16035/j.issn.1001-7283.2024.01.016

所属专题: 水稻专题

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

抽穗期高温胁迫对不同水稻品种产量构成和品质的影响

季平1(), 刘金龙1(), 柳浩1, 匡佳丽1, 叶世河1, 龙莎1, 杨洪涛1, 彭勃1, 徐晨2, 刘晓龙1()   

  1. 1宜春学院生命科学与资源环境学院/江西省高等学校硒农业工程技术研究中心,336000,江西宜春
    2吉林省农业科学院农业资源与环境研究所,130033,吉林长春
  • 收稿日期:2022-06-14 修回日期:2022-07-28 出版日期:2024-02-15 发布日期:2024-02-20
  • 通讯作者: 刘晓龙,研究方向为作物对逆境响应的生理和分子机制,E-mail:lxl032202@163.com
  • 作者简介:季平,主要从事作物逆境生理研究,E-mail:jipingteng@163.com;|刘金龙,主要从事作物逆境生理研究,E-mail:3275268807@qq.com
  • 基金资助:
    江西省自然科学基金(20202BABL213046);江西省教育厅科技项目(GJJ190868)

Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage

Ji Ping1(), Liu Jinlong1(), Liu Hao1, Kuang Jiali1, Ye Shihe1, Long Sha1, Yang Hongtao1, Peng Bo1, Xu Chen2, Liu Xiaolong1()   

  1. 1College of Life Science and Resources and Environment, Yichun University / Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun 336000, Jiangxi, China
    2Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
  • Received:2022-06-14 Revised:2022-07-28 Online:2024-02-15 Published:2024-02-20
  • Contact: Liu Xiaolong

摘要:

为系统研究抽穗期高温胁迫对水稻产量构成以及稻米品质的影响,以江西省普遍推广种植的8个水稻品种为材料,测定各水稻品种在抽穗期高温胁迫下(38 ℃/32 ℃,昼/夜)抽穗期、穗部性状、产量构成和稻米品质的差异。结果表明,抽穗期高温胁迫下,水稻抽穗期缩短,穗部发育受到抑制,穗长和穗重显著下降。高温胁迫导致各品种产量下降了27.44%~40.33%,产量构成中以千粒重的下降幅度较大。高温胁迫导致籽粒淀粉和蔗糖含量、糙米率、精米率和整精米率下降,葡萄糖和果糖含量、垩白粒率及垩白度升高。黄华占和湘两优900在抽穗期高温胁迫下的产量损失较小,与对照处理相比,有较高的穗长、穗重和穗粒数,以及较小的籽粒淀粉和蔗糖含量下降幅度。产量损失较大的品种为粤王丝苗和湘两优2号。高温胁迫下水稻品种各指标的综合抗逆系数与产量损失高度一致。综上,抽穗期高温胁迫对水稻产量形成和稻米品质的影响具有一致性,产量损失较大的品种其稻米品质受影响也较大。

关键词: 水稻, 高温胁迫, 抽穗期, 产量, 品质

Abstract:

In order to systematically analyzed the effects of heat stress on yield components and rice quality during heading stage, eight rice varieties widely planted in Jiangxi province were used as materials, and the differences of heading time, panicle characteristics, yield components and rice quality among different rice varieties were measured under heat stress (38 ℃/32 ℃, day/night) at heading stage. The results showed that heat stress during heading stage induced the shortened of heading time, panicle development was inhibited, panicle length and panicle weight decreased significantly. Heat stress caused yield loss by 27.44%-40.33% among different rice varieties, respectively, and the 1000-grain weight was the largest decline index of yield components under heat stress. Heat stress caused decrease of the contents of starch and sucrose, as well the rates of brown rice, milled rice and head rice, while the contents of glucose and fructose, chalky kernel and chalkiness were significantly increased induced by heat stress. The yield loss of Huanghuazhan and Xiangliangyou 900 were less than other rice varieties under heat stress during heading stage, which was expressed by smaller shortened of heading time, higher panicle length, panicle weight and more spikelets, as well as smaller decline of the starch and sucrose content. The yield loss of Yuewangsimiao and Xiangliangyou 2 were more than other rice varieties under heat stress. The resistance coefficient in multiple indices of each rice variety was highly consistent with the yield loss under heat stress. Taken together, there was consistency of effects induced by heat stress between yield formation and rice quality, which indicated that rice varieties with higher yield loss suffered from severe effects in rice quality induced by heat stress.

Key words: Rice, Heat stress, Heading stage, Yield, Quality

表1

不同水稻品种的生育期

品种
Variety
生育期
Growth period
品种
Variety
生育期
Growth period
C1 136 C5 136
C2 122 C6 139
C3 122 C7 121
C4 121 C8 139

表2

Heading stages of different rice cultivars 月-日 month-day

品种
Variety
始穗期
Initial heading stage
齐穗期Full heading stage
对照CK 高温HS
C1 07-23 08-01 07-31
C2 07-14 07-22 07-20
C3 07-15 07-24 07-23
C4 07-13 07-22 07-20
C5 07-25 08-04 08-02
C6 07-26 08-04 08-04
C7 07-13 07-21 07-20
C8 07-25 08-04 08-01

图1

抽穗期高温胁迫下不同水稻品种穗部生长指标和产量构成的差异 “*”和“**”分别表示同一品种的不同处理在0.05和0.01水平上差异显著,下同。

图2

抽穗期高温胁迫对不同水稻品种产量的影响

图3

抽穗期高温胁迫对不同水稻品种籽粒淀粉和糖类物质含量的影响

表3

抽穗期高温胁迫对不同水稻品种稻米外观和加工品质的影响

品种
Variety
糙米率
Brown rice rate
精米率
Milled rice rate
整精米率
Head rice rate
垩白粒率
Chalky kernel rate
垩白度
Chalkiness
对照CK 高温HS 对照CK 高温HS 对照CK 高温HS 对照CK 高温HS 对照CK 高温HS
C1 77.88±3.66 71.47±3.49* 72.37±2.31 67.62±2.35** 68.13±5.55 62.63±2.18* 8.48±1.25 10.37±0.63** 3.78±0.56 4.80±0.51**
C2 74.35±3.34 64.02±2.63** 64.33±3.07 57.50±3.08** 57.82±3.02 51.90±1.19** 14.87±1.79 18.20±1.32** 5.10±0.63 6.47±0.22**
C3 78.98±3.28 70.98±2.69** 71.20±2.95 63.07±1.75** 63.95±1.98 56.35±2.16** 12.38±2.00 15.87±0.48** 4.03±0.61 5.32±0.23**
C4 72.08±1.16 62.35±1.79** 66.47±3.36 58.62±2.04** 58.80±1.96 52.05±1.71** 15.90±1.60 20.78±1.24** 5.82±0.52 7.80±0.33**
C5 70.78±3.99 65.23±2.92* 70.68±3.10 64.20±1.48** 64.63±2.99 59.75±3.39* 13.18±2.04 16.28±0.99** 5.15±1.10 6.20±0.44*
C6 71.12±3.88 64.80±4.00* 69.65±4.94 63.12±1.48* 65.30±2.89 58.85±1.80** 10.47±1.07 13.03±0.54** 4.17±0.77 5.03±0.22*
C7 76.10±4.18 69.95±3.08* 68.33±5.50 62.70±2.70* 59.28±5.83 54.30±1.51 17.72±1.86 21.05±1.26** 8.02±0.79 9.22±0.46**
C8 78.57±3.37 71.27±1.90** 69.78±5.07 63.78±1.99* 62.57±1.94 56.50±1.76** 17.92±1.68 24.73±1.43** 8.08±0.39 10.87±0.56**

图4

抽穗期高温胁迫下不同水稻品种各指标的抗逆系数 不同小写字母表示不同品种间在0.05水平上差异显著。

[1] Zhao C, Liu B, Piao S L, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:9326-9331.
[2] Xu Y F, Chu C C, Yao S G. The impact of high-temperature stress on rice: challenges and solutions. The Crop Journal, 2021, 9(5):963-976.
doi: 10.1016/j.cj.2021.02.011
[3] Janni M, Gullì M, Maestri E, et al. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 2020, 71:3780-3802.
doi: 10.1093/jxb/eraa034 pmid: 31970395
[4] 刘文英, 孙素琴, 刘冬梅, 等. 1959-2020年江西省持续区域性高温过程特征. 气象与减灾研究, 2021, 44(4):251-256.
[5] 杨建莹, 霍治国, 王培娟, 等. 江西早稻高温热害等级动态判识及时空变化特征. 应用生态学报, 2020, 31(1):199-207.
doi: 10.13287/j.1001-9332.202001.017
[6] 张卫建, 陈长青, 江瑜, 等. 气候变暖对我国水稻生产的综合影响及其应对策略. 农业环境科学学报, 2020, 39(4):805-811.
[7] 宋有金, 吴超, 李子煜, 等. 水稻产量对生殖生长阶段不同时期高温的响应差异. 中国水稻科学, 2021, 35(2):177-186.
doi: 10.16819/j.1001-7216.2021.0203
[8] 刘晓龙, 季平, 杨洪涛, 等. 脱落酸对水稻抽穗开花期耐高温胁迫的诱抗效应. 植物学报, 2022, 57(5):596-610.
doi: 10.11983/CBB22022
[9] 张桂莲, 张顺堂, 肖浪涛, 等. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响. 中国水稻科学, 2014, 28 (2):155-166.
[10] Wang Y L, Wang L, Zhou J X, et al. Research progress on heat stress of rice at flowering stage. Rice Science, 2019, 26(1):1-10.
doi: 10.1016/j.rsci.2018.06.009
[11] Zhang C X, Feng B H, Chen T T, et al. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environmental and Experimental Botany, 2018, 155:718-733.
doi: 10.1016/j.envexpbot.2018.08.021
[12] 成臣, 曾勇军, 程慧煌, 等. 齐穗至乳熟期不同温度对水稻南粳9108籽粒激素含量、淀粉积累及其合成关键酶活性的影响. 中国水稻科学, 2019, 33(1):57-67.
doi: 10.16819/j.1001-7216.2019.8077
[13] Lyman N B, Jagadish K S, Nalley L L, et al. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS ONE, 2013, 8:e72157.
doi: 10.1371/journal.pone.0072157
[14] 段骅, 佟卉, 刘燕清, 等. 高温和干旱对水稻的影响及其机制的研究进展. 中国水稻科学, 2019, 33(3):206-218.
doi: 10.16819/j.1001-7216.2019.8106
[15] 徐富贤, 周兴兵, 蒋鹏, 等. 利用杂交水稻开花比例鉴定耐高温性的方法. 中国生态农业学报, 2017, 25(9):1335-1344.
[16] 杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展. 应用生态学报, 2020, 31(8):2817-2830.
doi: 10.13287/j.1001-9332.202008.027
[17] 曹云英, 段骅, 杨立年, 等. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因. 作物学报, 2000, 35 (3):512-521.
[18] 陶龙兴, 谈惠娟, 王熹, 等. 开花和灌浆初期高温胁迫对国稻6号结实的生理影响. 作物学报, 2009, 35(1):110-117.
doi: 10.3724/SP.J.1006.2009.00110
[19] 池忠志, 郑家国, 姜心禄, 等. 四川杂交籼稻品种耐热性研究. 中国稻米, 2010, 16(3):14-15.
[20] 杨梯丰, 张少红, 王晓飞, 等. 水稻抽穗开花期耐热种质资源的筛选鉴定. 华南农业大学学报, 2012, 33(4):585-588.
[21] Zhao Q, Zhou L J, Liu J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiology and Biochemistry, 2018, 122:90-101.
doi: S0981-9428(17)30372-8 pmid: 29202329
[22] Shi P, Tang L, Wang L, et al. Post-heading heat stress in rice of South China during 1981-2010. PLoS ONE, 2015, 10:e0130642.
doi: 10.1371/journal.pone.0130642
[23] Huang J, Zhang F M, Xue Y, et al. Recent changes of rice heat stress in Jiangxi province, southeast China. International Journal of Biometeorology, 2017, 61:623-633.
doi: 10.1007/s00484-016-1239-3 pmid: 27577031
[24] Ahmed N, Tetlow I J, Nawaz S, et al. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science and Food Agricultural, 2015, 95(11):2237-2243.
doi: 10.1002/jsfa.2015.95.issue-11
[25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 优质稻谷:GB/T 17891-2017. 北京: 中国标准出版社, 2017.
[26] Shi W, Li X, Schmidt R C, et al. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice. Plant Cell and Environment, 2018, 41:1287-1297.
doi: 10.1111/pce.v41.6
[27] Zhang C, Li G, Chen T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018, 11(1):14.
doi: 10.1186/s12284-018-0206-5 pmid: 29532187
[28] 王强, 陈雷, 张晓丽, 等. 水稻生殖生长阶段不同时期高温热害对产量损失的影响. 中国稻米, 2017, 23(4):78-80.
[29] 甄博, 周新国, 陆红飞, 等. 拔节期高温与涝交互胁迫对水稻生长发育的影响. 农业工程学报, 2018, 34(21):105-111.
[30] 唐汇春, 谢晓金. 不同生育期高温对水稻物质转运及产量结构的影响. 江西农业学报, 2022, 34(2):1-7.
[31] 吴思佳, 李仁英, 谢晓金, 等. 抽穗期高温对水稻叶片光合特性、叶绿素荧光特性和产量构成因素的影响. 南方农业学报, 2021, 52(1):20-27.
[32] 石春林, 骆宗强, 江敏, 等. 减数分裂期高温对水稻穗粒数影响的定量分析. 中国水稻科学, 2017, 31(6):658-664.
doi: 10.16819/j.1001-7216.2017.7032
[33] 闫浩亮, 王松, 王雪艳, 等. 不同水稻品种在高温逼熟下的表现及其与气象因子的关系. 中国水稻科学, 2021, 35(6):617-628.
doi: 10.16819/j.1001-7216.2021.210509
[34] 张桂莲, 张顺堂, 王力, 等. 抽穗结实期不同时段高温对稻米品质的影响. 中国农业科学, 2013, 46(14):2869-2879.
doi: 10.3864/j.issn.0578-1752.2013.14.003
[35] 何国成, 张桂莲, 蔡志欢, 等. 花后不同时段高温对水稻籽粒充实的影响. 植物生理学报, 2017, 53(8):1539-1544.
[36] Liu J P, Zhang C C, Wei C C, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2- induced stomatal closure in rice. Plant Physiology, 2016, 170:429-443.
doi: 10.1104/pp.15.00879
[37] Jagadish S V K, Muthurajan R, Oana R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61:143-156.
doi: 10.1093/jxb/erp289 pmid: 19858118
[38] Liao J L, Zhang H Y, Shao X L, et al. Identification on heat tolerance of backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice. Rice Science, 2011, 18:279-286.
doi: 10.1016/S1672-6308(12)60006-7
[39] Shi W J, Yin X Y, Struik P C, et al. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. Journal of Experimental Botany, 2017, 68:5233-5245.
doi: 10.1093/jxb/erx344 pmid: 29106621
[40] 王亚梁, 张玉屏, 曾研华, 等. 水稻穗形成期高温影响的研究进展. 浙江农业科学, 2014(11):1681-1685.
[41] Liu X L, Xie X Z, Zheng C K, et al. RNAi-mediated suppression of the abscisic acid catabolism gene OsABA8ox1 increases abscisic acid content and tolerance to saline-alkaline stress in rice (Oryza sativa L.). The Crop Journal, 2022, 10(2):354-367.
doi: 10.1016/j.cj.2021.06.011
[42] 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应. 农业环境科学学报, 2020, 39(4):822-833.
[43] Kato K, Suzuki Y, Hosak Y, et al. Effect of high temperature on starch biosynthetic enzymes and starch structure in japonica rice cultivar “Akitakomachi” (Oryza sativa L.) endosperm and palatability of cooked rice. Journal of Cereal Science, 2019, 87:209-214.
doi: 10.1016/j.jcs.2019.04.001
[44] SiddikK M A, Zhang J, Chen J, et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. European Journal of Agronomy, 2019, 106:30-38.
doi: 10.1016/j.eja.2019.03.004
[45] 王军可, 王亚梁, 陈惠哲, 等. 灌浆初期高温影响水稻籽粒碳氮代谢的机理. 中国农业气象, 2020, 41(12):774-784.
[1] 周镇磊, 刘建明, 曹东, 刘宝龙, 王东霞, 张怀刚. 不同燕麦品种草产量、农艺性状和饲草品质的比较[J]. 作物杂志, 2024, (1): 132–140
[2] 熊昕, 邓俊, 尚李岩, 盛添, 叶佳雨, 刘子琛, 黄礼英, 张运波. 氮钾肥互作对杂交稻产量和辐射利用效率的影响[J]. 作物杂志, 2024, (1): 166–173
[3] 刘哲文, 郭丹丹, 常旭虹, 王德梅, 杨玉双, 刘希伟, 王玉娇, 石书兵, 王艳杰, 赵广才. 氮肥追施时期和比例对强筋小麦籽粒灌浆及其生理机制的影响[J]. 作物杂志, 2024, (1): 174–179
[4] 郝小聪, 李欣宇, 侯起岭, 杨吉芳, 安春会, 王长华, 叶志杰, 张风廷. 施氮量对二系杂交小麦品质的影响[J]. 作物杂志, 2024, (1): 187–192
[5] 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193–203
[6] 张璐, 李登明, 翟晓宇, 武俊英, 高世华, 赵宇飞. 燕麦刈割期农艺与品质性状差异及其与再生性能的关系[J]. 作物杂志, 2024, (1): 220–228
[7] 邵美红, 朱德峰, 程思明, 程楚, 徐群英, 胡潮水. 早稻叠盘出苗育秧机插的秧苗质量及产量研究[J]. 作物杂志, 2024, (1): 229–232
[8] 谢可冉, 高逖, 崔克辉. 高温下钾肥调控水稻产量的研究进展[J]. 作物杂志, 2024, (1): 8–15
[9] 谢昊, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 杨建昌, 顾骏飞. 不同栽培措施下水稻基肥氮素利用率的15N示踪分析[J]. 作物杂志, 2024, (1): 90–96
[10] 王洪博, 唐茂淞, 李国辉, 高阳, 王兴鹏. 基于Logistic模型的南疆无膜滴灌棉花产量模型构建与评价[J]. 作物杂志, 2024, (1): 97–103
[11] 刘哲文, 郭丹丹, 常旭虹, 王德梅, 王艳杰, 杨玉双, 刘希伟, 王玉娇, 石书兵, 赵广才. 强筋小麦花后氮素积累和转运对氮肥追施时期和比例的响应[J]. 作物杂志, 2023, (6): 114–120
[12] 周旭, 何晓蕾, 曹亮, 李多, 傅晨野, 张明聪, 张玉先, 王孟雪. 苗期不同程度水分胁迫及复水处理对大豆抗氧化特性及产量的影响[J]. 作物杂志, 2023, (6): 135–142
[13] 杨善伟, 梁仁敏, 赵海红, 韦贵剑, 贺登美, 黄徐谋, 胡忠银, 韦春项, 许畅, 韦敏超, 魏爽, 罗继腾, 徐莹莹, 张秀花, 韩亦, 王士强. 孕穗期低温胁迫对优质香稻产量及其构成因素的影响[J]. 作物杂志, 2023, (6): 143–149
[14] 刘希伟, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 小麦生育中后期干旱高温对籽粒产量形成过程的影响机制及缓解措施[J]. 作物杂志, 2023, (6): 17–25
[15] 董好胜, 王琦, 闫鹏, 许艳丽, 张薇, 卢霖, 董志强. 乙矮合剂对谷子茎秆抗倒伏能力及产量的影响[J]. 作物杂志, 2023, (6): 181–189
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!