作物杂志,2025, 第2期: 241–248 doi: 10.16035/j.issn.1001-7283.2025.02.033

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

海泡石和生物炭对水稻镉和砷吸收积累的影响

江素珍1,2(), 许超2(), 王中元2, 郑沈2, 陈建国1(), 朱捍华2, 黄道友2, 张泉2, 朱奇宏2   

  1. 1中南林业科技大学生命科学与技术学院,410004,湖南长沙
    2中国科学院亚热带农业生态研究所 亚热带农业生态过程重点实验室/中国科学院长沙农业环境观测研究站,410125,湖南长沙
  • 收稿日期:2024-01-22 修回日期:2024-03-23 出版日期:2025-04-15 发布日期:2025-04-16
  • 通讯作者: 许超,陈建国
  • 作者简介:江素珍,主要从事土壤与环境生态研究,E-mail:1799109560@qq.com
  • 基金资助:
    国家自然科学基金(42177025);湖南省重点研发计划(2023NK2026);国家麻类产业技术体系(CARS-16-E09)

Effects of Sepiolite and Biochar on the Uptake and Accumulation of Cadmium and Arsenic in Rice

Jiang Suzhen1,2(), Xu Chao2(), Wang Zhongyuan2, Zheng Shen2, Chen Jianguo1(), Zhu Hanhua2, Huang Daoyou2, Zhang Quan2, Zhu Qihong2   

  1. 1College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
    2Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences / Changsha Research Station for Agricultural & Environmental Monitoring, Chinese Academy of Sciences, Changsha 410125, Hunan, China
  • Received:2024-01-22 Revised:2024-03-23 Online:2025-04-15 Published:2025-04-16
  • Contact: Xu Chao,Chen Jianguo

摘要:

为明确钝化材料(海泡石和生物炭)组配同步降低稻米镉(Cd)、砷(As)的调控机制,采用盆栽试验,研究海泡石(sepiolite,S)、生物炭(biochar,B)、海泡石和生物炭配施(SB,质量比1:1组配)对土壤有效态镉、砷含量、根表铁膜量及其镉、砷固定和水稻各部位镉、砷含量的影响。结果表明,与不施用钝化材料(CK)相比,施用钝化材料显著提高土壤pH,降低土壤有效态Cd含量,对有效态As含量无显著影响。S、B和SB处理土壤pH分别显著提高1.35、1.35和1.18,土壤有效态Cd含量分别显著降低32.6%、38.8%和21.8%。S、B和SB处理根表铁膜Cd含量分别显著降低58.5%、63.6%和55.0%。SB处理根表铁膜As含量显著提高47.2%,对稻田镉、砷复合污染的修复效果最好。稻米Cd与根表铁膜Cd和有效态Cd呈显著正相关,稻米As与根表铁膜As含量呈显著负相关,与茎As含量呈显著正相关。海泡石和生物炭配施同步降低稻米Cd和As含量。

关键词: 钝化材料, 海泡石, 生物炭, 镉, 砷, 吸收, 水稻

Abstract:

In order to clarify the regulatory mechanism of passivator material (sepiolite and biochar) combination to reduce Cd and As in rice, a pot experiment was conducted to investigate the effects of sepiolite (S), biochar (B), sepiolite and biochar combination (SB, mass ratio of 1:1) on the concentration of available Cd and As in soil, the formation of Fe plaque on root surface and its immobilization of Cd and As, and the concentration of Cd and As in rice tissues. The results showed that, compared with no passivator material, the application of passivator material significantly increased soil pH, reduced soil available Cd concentration, and had no significant effect on available As concentration. Compared with CK, the S, B and SB treatments significantly increased soil pH by 1.35, 1.35 and 1.18, and significantly decreased soil available Cd by 32.6%, 38.8% and 21.8% (P < 0.05), respectively. The Cd concentration in iron plaque of the S, B, and SB treatments significantly decreased by 58.5%, 63.6% and 55.0%, respectively. The SB treatment significantly increased the As concentration in iron plaque by 47.2%. The SB treatment had the best remediation effect on Cd and As compound pollution in paddy field. The Cd concentration in rice grains were significantly positively correlated with the concentration of Cd in iron plaque and available Cd in soil, and the As concentration in rice grains was significantly negatively correlated with the concentration of As in iron plaque, significantly positively correlated with the concentration of As in stems. The combination of sepiolite and biochar simultaneously reduced the Cd and As concentration in rice grains.

Key words: Passivator material, Sepiolite, Biochar, Cadmium, Arsenic, Uptake, Rice

表1

供试土壤及钝化材料的基本理化性质

材料
Material
pH 总Cd
Total Cd (mg/kg)
总As
Total As (mg/kg)
总N
Total N (g/kg)
总P
Total P (g/kg)
总K
Total K (g/kg)
有机碳
Organic carbon (g/kg)
供试土壤Test soil 6.03 4.07 147.06 0.74 0.79 13.65 19.86
海泡石Sepiolite 9.07 0.23 0.05
生物炭Biochar 8.30 0.15 0.06

图1

钝化材料对稻谷产量的影响 不同小写字母表示处理间差异显著(P < 0.05),下同。

图2

钝化材料对土壤理化性质的影响

图3

钝化材料对水稻根表铁膜镉、砷和铁含量的影响

表2

钝化材料对水稻各部位Cd和As含量的影响

处理
Treatment
Cd As
根Root 茎Stem 叶Leaf 稻米Rice 根Root 茎Stem 叶Leaf 稻米Rice
CK 9.78±0.41a 1.89±0.13a 0.97±0.09a 0.20±0.02a 15.58±0.88b 13.29±0.62a 11.71±0.18a 1.01±0.04a
S 2.74±0.15b 0.84±0.04b 0.34±0.02b 0.12±0.01b 16.14±1.50b 14.35±0.65a 12.26±0.16a 1.11±0.06a
B 2.59±0.23bc 0.69±0.05b 0.31±0.01b 0.13±0.00b 18.12±0.23ab 14.14±0.70a 14.03±1.28a 1.07±0.02a
SB 1.84±0.16c 0.74±0.07b 0.32±0.03b 0.14±0.01b 20.38±1.11a 11.35±0.37b 12.39±0.54a 0.78±0.02b

图4

不同指标相关性分析 CdR:根Cd含量,CdS:茎Cd含量,CdL:叶Cd含量,CdG:米Cd含量,AsR:根As含量,AsS:茎As含量,AsL:叶As含量,AsG:米As含量,CdIP:根表铁膜Cd含量,AsIP:根表铁膜As含量,FeIP:根表铁膜Fe含量,A-Cd:有效态Cd含量,A-As:有效态As含量,A-Fe:有效态Fe含量。“*”、“**”和“***”分别表示在P < 0.05、P < 0.01和P < 0.001水平显著相关。

[1] Islam S, Rahman M M, Islam M, et al. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. Environment International, 2016,96:139-155.
[2] Yan K, Wang H Z, Lan Z, et al. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. Journal of Cleaner Production, 2022,373:133780.
[3] Umair A, Huma A, Hafsa S, et al. Remediation techniques for elimination of heavy metal pollutants from soil: A review. Environmental Research, 2022, 214(4):113918.
[4] 曹锐, 王悦, 陈爽, 等. 镉砷复合污染水稻土原位钝化修复技术研究进展. 土壤学报, 2023, 60(3):657-672.
[5] Hamid Y, Tang L, Hussain B, et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system:A review. Science of the Total Environment, 2020,707:136121.
[6] 王侠, 王欣, 杜艳艳, 等. 改性纳米零价铁对稻田土壤As污染的修复效能. 环境科学研究, 2017, 30(9):1406-1414.
[7] Huang S H, Rao G S, Ashraf U, et al. Application of inorganic passivators reduced Cd contents in brown rice in oilseed rape-rice rotation under Cd contaminated soil. Chemosphere, 2020,259:127404.
[8] 李增飞, 廖国建, 石圣杰, 等. 淹水条件下叶面喷施硒与海泡石联合降低水稻吸收砷镉的风险. 农业环境科学学报, 2023, 42(6):1208-1218.
[9] 王辉. 几种具有钝化作用物质及其组合对土壤镉镍砷的钝化作用. 长沙:湖南农业大学, 2018.
[10] Liu N, Lou X G, Li X, et al. Rhizosphere dissolved organic matter and iron plaque modified by organic amendments and its relations to cadmium bioavailability and accumulation in rice. Science of the Total Environment, 2021,792:148216.
[11] Zhou P F, Zhang P, He M K, et al. Iron-based nanomaterials reduce cadmium toxicity in rice (Oryza sativa L.)by modulating phytohormones,phytochelatin,cadmium transport genes and iron plaque formation. Environmental Pollution, 2023,320:121063.
[12] Zhou S J, Liu Z Y, Sun G, et al. Simultaneous reduction in cadmium and arsenic accumulation in rice (Oryza sativa L.) by iron/iron-manganese modified sepiolite. Science of the Total Environment, 2021,810:152189.
[13] Yin D X, Wang X, Peng B, et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere, 2017,186:928-937.
[14] 李叶开, 赵婷婷, 陈佳, 等. 不同有机物料对水稻根表铁膜及砷镉吸收转运的影响. 环境科学, 2021, 42(4):2047-2055.
[15] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
[16] 熊婕, 朱奇宏, 黄道友, 等. 南方典型稻区稻米镉累积量的预测模型研究. 农业环境科学学报, 2019, 38(1):22-28.
[17] 陈佳, 赵秀兰. 水分管理与施硅对水稻根表Fe膜及砷Cd吸收的影响. 环境科学, 2021, 42(3):1535-1544.
[18] 肖敏, 范晶晶, 王华静, 等. 紫云英还田配施石灰对水稻Cd吸收转运的影响. 中国环境科学, 2022, 42(1):276-284.
[19] 刘雅仙, 安宁, 吴正超, 等. 长期水稻秸秆及生物炭还田替代等养分量化肥对寒地水稻产量和氮肥利用率的影响. 植物营养与肥料学报, 2023, 29(10):1771-1782.
[20] Xu C, Xiang Q, Zhu H H, et al. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil. Ecotoxicology and Environmental Safety, 2018,164:554-561.
[21] Liang X F, Xu Y, Xu Y M, et al. Two-year stability of immobilization effect of sepiolite on Cd contaminants in paddy soil. Environmental Science and Pollution Research, 2016,23:12922-12931.
[22] 裴楠, 梁学峰, 秦旭, 等. 海泡石对镉污染稻田钝化修复效果的稳定性. 农业环境科学学报, 2022, 41(2):277-284.
[23] Xu C, Chen H X, Xiang Q, et al. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Environmental Science and Pollution Research, 2018,25:1147-1156.
[24] 肖坤, 田小辉, 蒋珍茂, 等. 镉钝化剂筛选及其对中微量元素有效性的影响. 农业环境科学学报, 2022, 41(1):55-65.
[25] Zeng T, Khaliq M A, Li H L, et al. Assessment of Cd availability in rice cultivation (Oryza sativa L.):Effects of amendments and the spatiotemporal chemical changes in rhizosphere and bulk soil. Ecotoxicology and Environmental Safety, 2020,196:110490.
[26] Zhu H H, Chen C, Xu C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 2016,219:99-106.
[27] Chen D, Ye X Z, Zhang Q, et al. The effect of sepiolite application on rice Cd uptake-A two-year field study in Southern China. Journal of Environmental Management, 2020,254:109788.
[28] Liang X F, Han J, Xu Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite. Geoderma, 2014,235-236:9-18.
[29] 汪毅, 王华静, 郑沈, 等. 3种钝化剂及其组合对小白菜镉铅含量的影响. 环境科学与技术, 2020, 43(12):143-150.
[30] 孙约兵, 徐应明, 史新, 等. 海泡石对镉污染红壤的钝化修复效应研究. 环境科学学报, 2012, 32(6):1465-1472.
[31] Liu M S, Almatrafi E, Zhang Y, et al. A critical review of biochar-based materials for the remediation of heavy metals contaminated environment: Applications and practical evaluations. Science of the Total Environment, 2022,806:150531.
[32] Li S S, Lei X Q, Qin L Y, et al. Fe(III) reduction due to low pe+pH contributes to reducing Cd transfer within a soil-rice system. Journal of Hazardous Materials, 2021,415:125668.
[33] 孙慧, 吴迪, 王宇, 等. 海泡石与生物炭对镉污染红壤的钝化修复研究. 江苏农业科学, 2018, 46(14):289-291.
[34] 李娟. 安全利用类轻中度镉污染农田土壤原位调理修复应用研究. 北京: 北京林业大学, 2020.
[35] 张晓峰, 方利平, 李芳柏, 等. 水稻全生育期内零价铁与生物炭钝化土壤镉砷的协同效应与机制. 生态环境学报, 2020, 29(7):1455-1465.
[36] 曹雲清, 徐晓燕, 韩磊, 等. 全生育期淹水联合钝化材料对重度Cd污染下水稻生长和镉富集的影响. 农业环境科学学报, 2018, 37(11):2498-2506.
[37] Zhou H, Zhu W, Yang W T, et al. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicology and Environmental Safety, 2018,152:91-97.
[38] Wu J Z, Huang D, Liu X M, et al. Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. Journal of Hazardous Materials, 2018,348:10-19.
[39] Moulick D, Santra C S, Ghosh D. Rice seed priming with Se:A novel approach to mitigate As induced adverse consequences on growth, yield and As load in brown rice. Journal of Hazardous Materials, 2018,355:187-196.
[1] 张家智, 赵羽涵, 丁俊杰, 姚亮亮, 邱磊, 张茂明, 王自杰, 高雪冬, 黄成亮, 崔士泽, 杨晓贺. “双免密苗”技术对寒地水稻秧苗素质及酶活性的影响[J]. 作物杂志, 2025, (2): 109–114
[2] 姬景红, 刘双全, 马星竹, 郝小雨, 郑雨, 赵月, 王晓军, 匡恩俊. 控释尿素对寒地水稻农艺性状、产量及氮肥利用率的影响[J]. 作物杂志, 2025, (2): 149–154
[3] 金丹丹, 隋世江, 陈玥, 李波, 曲航, 宫亮. 秸秆还田下氮肥减量对辽河平原水稻产量及氮素利用的影响[J]. 作物杂志, 2025, (2): 172–179
[4] 雷云, 刘月炎, 王健健. CO2加富和供磷水平对辣椒苗期生长及营养元素吸收的影响[J]. 作物杂志, 2025, (2): 189–195
[5] 伍露, 张皓, 杨霏云, 郭尔静, 斯林林, 曹凯, 程陈. WOFOST模型对江淮地区水稻生长发育模拟的适应性评价[J]. 作物杂志, 2025, (2): 215–221
[6] 胡聪聪, 李红宇, 孙显龙, 王童, 赵海成, 范名宇, 张巩亮. 秸秆还田与氮肥运筹对寒地水稻光合特性和产量的影响[J]. 作物杂志, 2025, (1): 147–154
[7] 徐晓征, 王建军. 光周期影响水稻抽穗的分子机制研究进展[J]. 作物杂志, 2025, (1): 15–25
[8] 侯赛赛, 李畅, 李青云, 王鑫鑫. 不同供磷水平下大白菜的生长和磷吸收策略研究[J]. 作物杂志, 2025, (1): 220–226
[9] 闫娜, 谢可冉, 高逖, 胡秋倩, 崔克辉. 增施穗氮肥缓解水稻穗分化期高温伤害的生理机制研究[J]. 作物杂志, 2025, (1): 89–98
[10] 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 1–8
[11] 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126–131
[12] 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147–152
[13] 阳新月, 向颖, 陈子恒, 林茜, 邓振鹏, 周克友, 李明聪, 王季春. 有机质施用量对马铃薯产量及氮、磷、钾养分吸收利用的影响[J]. 作物杂志, 2024, (6): 153–161
[14] 赵希梅, 李琪, 严如玉, 向风云, 李雅琼, 李绪勋, 邹家龙, 李继福. 无人机飞播时期及播种方式对冬油菜产量、品质和经济效益的影响[J]. 作物杂志, 2024, (6): 179–185
[15] 胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析[J]. 作物杂志, 2024, (6): 218–225
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!