作物杂志,2025, 第1期: 147–154 doi: 10.16035/j.issn.1001-7283.2025.01.018

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

秸秆还田与氮肥运筹对寒地水稻光合特性和产量的影响

胡聪聪1(), 李红宇1,2(), 孙显龙1, 王童1, 赵海成1,2, 范名宇1,2, 张巩亮3   

  1. 1黑龙江八一农垦大学农学院/黑龙江省现代农业栽培技术与作物种质改良重点实验室,163319,黑龙江大庆
    2农业农村部东北平原农业绿色低碳重点实验室,163319,黑龙江大庆
    3黑龙江省农业科学院齐齐哈尔分院,161006,黑龙江齐齐哈尔
  • 收稿日期:2023-09-16 修回日期:2024-04-01 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 李红宇,主要从事寒地水稻优质高产生理生态及遗传多样性研究,E-mail:ndrice@163.com
  • 作者简介:胡聪聪,主要从事寒地水稻优质高产生理生态及遗传多样性研究,E-mail:2383248785@qq.com
  • 基金资助:
    中央支持地方高校改革发展资金人才培养项目(2022010006);黑龙江省重点研发计划(GA21B002)

Effects of Straw Returning and Nitrogen Fertilizer Management on Photosynthetic Characteristics and Yield of Rice in Cold Region

Hu Congcong1(), Li Hongyu1,2(), Sun Xianlong1, Wang Tong1, Zhao Haicheng1,2, Fan Mingyu1,2, Zhang Gongliang3   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University / Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
    2Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, Heilongjiang, China
    3Qiqihar Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, Heilongjiang, China
  • Received:2023-09-16 Revised:2024-04-01 Online:2025-02-15 Published:2025-02-12

摘要:

为明确秸秆还田与氮肥运筹对寒地水稻光合特性、干物质积累及产量的影响,采用两因素完全随机盆栽试验设计,对秸秆离田(S1)、还田(S2)和常规施氮(N1)、分蘖肥增氮15%(N2)、调节肥增氮15%(N3)、穗肥增氮15%(N4)处理的水稻分蘖特性、相对叶绿素含量(SPAD值)、光合特性、叶面积、干物质积累转运和产量进行了研究。结果表明,S2处理对穗数、千粒重和产量产生负作用,使齐穗期和灌浆期叶片SPAD值分别降低了3.27%和2.52%,齐穗期高效叶面积、胞间CO2浓度(Ci)、净光合速率(Pn)、干物质积累、茎鞘输出量、输出率和转化率分别显著降低13.51%、4.73%、5.79%、6.05%、26.82%、31.45%和26.05%。N2提高分蘖数和有效分蘖的数量,使增长速率加快,消亡速率减慢,水稻前期良好的氮素供应有利于提高水稻分蘖成穗率。N3使千粒重、产量和干物质积累量增加最多,同时增加了SPAD值和高效叶面积,齐穗期Ci、气孔导度、Pn和蒸腾速率表现出相同趋势。S2条件下N4显著降低了茎鞘输出量和茎鞘输出率,S1条件下N2处理使茎鞘输出量、茎鞘输出率和茎鞘转化率都增高。秸秆直接还田时注意水稻生长前中期氮素的供应,是实现秸秆还田条件下寒地水稻高效生产的重要保障。

关键词: 水稻, 秸秆还田, 氮肥运筹, 光合特性, SPAD值, 干物质积累

Abstract:

To clarify the effects of straw returning and nitrogen fertilizer management on the photosynthetic characteristics, dry matter accumulation, and yield of rice in cold regions, a two-factor fully randomized pot experiment was designed. The tillering characteristics, relative chlorophyll content (SPAD values), photosynthetic characteristics, leaf area, dry matter accumulation and transport and yield of rice treated with straw leaving the field (S1), straw returning (S2), and conventional nitrogen application (N1), tillering fertilizer nitrogen increase by 15% (N2), regulatory fertilizer nitrogen increase by 15% (N3), and panicle fertilizer nitrogen increase by 15% (N4) were studied. The results showed that: S2 treatment had a negative effect on the number of panicles, 1000- grain weight and yield, reducing the leaf SPAD values by 3.27% and 2.52% at the full heading and filling stages, respectively. During the full heading stage, the efficient leaf area, intercellular CO2 concentration (Ci), net photosynthetic rate (Pn), dry matter accumulation, stem sheath output, output rate, and transformation rate decreased by 13.51%, 4.73%, 5.79%, 6.05%, 26.82%, 31.45%, and 26.05%, respectively. N2 treatment increased the number of tillers and the number of effective tillers, so that the growth rate was accelerated and the rate of extinction was slowed down, and good nitrogen supply in the early stage of rice was conducive to the improvement of the rice tiller panicle-forming rate. N3 treatment increased 1000-grain weight, yield and dry matter accumulation the most, as well as increasing SPAD values and effective leaf area, and Ci, stomatal conductance, Pn and transpiration rate showed the same trend at the full heading stage. N4 treatment significantly reduced stem sheath output and stem sheath output rate under S1 condition and N2 treatment increased stem sheath output, stem sheath output rate and stem sheath transformation rate under S1 condition. Paying attention to the supply of nitrogen in the early and middle stages of rice growth when straw is directly returned to the field is an important guarantee for achieving efficient rice production in cold region under straw returning conditions.

Key words: Rice, Straw returning, Nitrogen fertilizer management, Photosynthetic characteristics, SPAD value, Dry matter accumulation

表1

供试土壤理化性质

土壤类型
Soil type
碱解氮
Alkaline nitrogen (mg/kg)
有效磷
Available phosphorus (mg/kg)
速效钾
Available potassium (mg/kg)
pH 有机质
Organic matter (g/kg)
白浆土White clay 134.80 20.81 72.05 6.64 28.98

表2

Fertilizer application method and N application rate g/盆 g/pot

施氮量
N application rate
基肥Base fertilizer 分蘖肥Tillering fertilizer 调节肥Regulatory fertilizer 穗肥Panicle fertilizer
N P2O5 K2O N N N K2O
N1 4.97 6.70 6.70 3.72 1.24 2.48 2.30
N2 4.97 6.70 6.70 4.28 1.24 2.48 2.30
N3 4.97 6.70 6.70 3.72 1.43 2.48 2.30
N4 4.97 6.70 6.70 3.72 1.24 2.85 2.30

表3

秸秆还田与氮肥运筹对分蘖性状的影响

处理
Treatment
最高分蘖数(/穴)
Maximum number of tillers (/hole)
有效分蘖数(/穴)
Number of effective tillers (/hole)
分蘖成穗率
Percentage of tillering to head (%)
增长速率
Growth rate (%)
消亡速率
Death rate (%)
S1 17.36a 15.54a 67.92a 53.63a 13.14a
S2 17.28a 15.40a 67.39a 52.89a 14.11a
N1 17.16b 14.85b 66.49b 52.03b 16.27a
N2 17.67a 16.19a 70.10a 55.24a 11.66b
N3 17.24b 15.55ab 67.48ab 52.89b 12.91ab
N4 17.21b 15.30b 66.54b 52.88b 13.66ab
FS 0.72 0.32 0.24 2.17 0.57
FN 5.49** 5.02** 2.45 7.75** 2.36
FS×N 0.06 0.00 0.05 0.73 0.01

表4

剑叶SPAD值的比较

处理
Treatment
齐穗期Full heading stage 灌浆期Filling stage
2020 2021 平均
Average
2020 2021 平均
Average
S1 45.02a 39.35a 42.18a 23.99a 27.52a 25.76a
S2 42.97b 38.63b 40.80b 23.26b 26.95b 25.11b
N1 42.23b 38.46b 40.34b 22.96b 26.40c 24.68b
N2 44.54a 39.53a 42.03a 24.16a 26.98bc 25.57a
N3 44.93a 39.02ab 41.97a 23.93ab 28.17a 26.05a
N4 44.29a 38.94ab 41.61a 23.46ab 27.41b 25.44a
FS 22.39** 5.19* 22.83** 5.03** 5.06* 9.82**
FN 7.77** 1.90 7.35** 2.60 8.63** 7.39**
FS×N 0.94 0.07 0.59 0.13 1.43 0.64

表5

齐穗期剑叶光合特征参数的比较

处理
Treatment
Ci (μmol/mol) Gs [mmol/(m2?s)] Pn [μmol/(m2?s)] Tr [mmol/(m2?s)]
2020 2021 平均
Average
2020 2021 平均
Average
2020 2021 平均
Average
2020 2021 平均
Average
S1 162.25a 297.75a 229.85a 337.83a 1570.25a 953.88a 35.08a 26.81a 30.93a 9.11a 10.36a 9.73a
S2 143.75b 294.58a 218.98b 329.50a 1532.50a 930.88a 33.05b 26.04a 29.53a 9.26a 10.08a 9.67a
N1 112.50c 292.00b 202.04c 278.00d 1448.17a 863.00a 32.57b 25.50a 29.02b 8.18c 9.90a 9.04c
N2 153.17b 294.67ab 223.71b 351.67b 1509.00a 930.13a 34.00ab 26.28a 30.13ab 9.08b 10.02a 9.55bc
N3 182.50a 301.33a 241.79a 379.50a 1646.50a 1012.88a 35.75a 28.10a 31.90a 10.44a 10.50a 10.47a
N4 163.83ab 296.67ab 230.13b 325.50c 1601.83a 963.50a 33.95ab 25.82a 29.88ab 9.03b 10.46a 9.74b
FS 8.71** 1.23 8.58** 1.01 0.04 0.05 5.79* 0.49 4.30 0.63 1.36 0.14
FN 22.30** 1.91 20.20** 27.19** 0.20 0.38 2.38 1.12 3.26* 25.98** 1.58 10.25**
FS×N 1.43 0.04 1.08 0.74 0.01 0.01 0.26 0.15 0.05 0.69 0.30 0.40

表6

灌浆期剑叶光合特征参数的比较

处理
Treatment
Ci
(μmol/mol)
Gs
[mmol/(m2?s)]
Pn
[μmol/(m2?s)]
Tr
[mmol/(m2?s)]
S1 349.58a 608.08a 9.83a 6.34a
S2 347.75a 543.00a 8.63a 5.98a
N1 356.83a 663.83a 9.83a 6.45a
N2 347.17a 610.00a 9.12a 6.37a
N3 346.33a 529.67a 9.10a 5.92a
N4 344.33a 498.67a 8.85a 5.90a
FS 0.09 0.95 4.43 1.21
FN 0.80 1.28 0.55 0.78
FS×N 0.81 0.62 0.71 0.25

表7

Comparison of leaf area at full heading stage cm2/穴cm2/hole

处理Treatment 剑叶Flag leaf 倒2叶Inverted second leaf 倒3叶Inverted third leaf 高效叶面积Efficient leaf area 总叶面积Total leaf area
S1 29.46a 42.35a 37.28a 109.10a 427.40a
S2 25.01b 37.15b 32.20b 94.36b 418.88a
N1 26.61a 38.46b 32.57b 97.64b 403.60a
N2 26.80a 38.71b 34.40ab 99.91b 411.48a
N3 28.24a 41.53a 36.57a 106.33a 450.36a
N4 27.31a 40.30ab 35.42a 103.02ab 427.13a
FS 50.33** 33.89** 31.90** 54.88** 0.25
FN 1.35 2.60 3.54* 3.62* 1.44
FS×N 0.07 0.09 0.17 0.12 0.06

表8

秸秆还田与氮肥运筹对干物质积累和转化的影响

处理
Treatment
齐穗期干物质
积累量(g/穴)
Dry matter accumulation
at full heading stage (g/hole)
成熟期干物质
积累量(g/穴)
Dry matter accumulation
at maturity stage (g/hole)
茎鞘输出量
Stem sheath
output (g/m2)
茎鞘输出率
Stem sheath
output rate (%)
茎鞘转化率
Stem sheath
transformation
rate (%)
2020 2021 平均
Average
2020 2021 平均
Average
2020 2021 平均
Average
2020 2021 平均
Average
2020 2021 平均
Average
S1 29.62a 36.80a 33.21a 64.39a 64.00a 64.20a -2.25a -3.80a -3.02a -13.89a -19.43a -16.66a -5.72a -11.63a -8.68a
S2 27.69a 34.72b 31.20b 63.58a 63.45a 63.52a -2.83a -4.83b -3.83b -18.32a -25.47b -21.90b -7.33a -14.66b -10.99b
N1 26.72b 33.52b 30.12b 59.79b 60.28b 60.03c -2.37a -4.82a -3.59a -15.67a -26.89c -21.20a -6.64a -15.80b -11.22a
N2 28.13ab 36.04a 32.08ab 61.86b 62.39b 62.13b -2.02a -3.83a -2.92a -12.70a -19.59ab -16.10a -5.34a -11.85ab -8.59a
N3 30.52a 37.17a 33.84a 67.46a 67.09a 67.27a -2.53a -3.71a -3.11a -15.01a -18.01a -16.50a -6.20a -10.21a -8.20a
N4 29.26ab 36.33a 32.79a 66.85a 65.14a 65.99a -3.25a -4.90a -4.08a -21.05a -25.31bc -23.18a -7.92a -14.72b -11.32a
FS 3.74 8.13* 9.10** 1.16 0.53 1.60 1.04 7.04* 4.99* 1.26 6.93* 5.22* 1.37 5.71* 5.64*
FN 2.64 4.63* 5.58** 25.00** 15.97** 39.15** 0.83 2.66 2.05 0.80 3.53* 2.33 0.62 4.12* 2.92
FS×N 0.02 1.17 0.41 0.22 0.48 0.29 0.12 6.13** 2.41 0.12 6.42** 2.22 0.14 5.55** 3.00

图1

秸秆还田与氮肥运筹两因素互作下水稻2021年的茎鞘输出量、茎鞘输出率、茎鞘转化率 不同小写字母表示差异达显著水平(P < 0.05),不同大写字母表示差异达极显著水平(P < 0.01)。

表9

秸秆还田与氮肥运筹对产量及其构成要素的影响

处理
Treatment
穗数(/穴)Panicle number (/hole) 穗粒数Grain number per panicle 千粒重1000-grain weight (g) 产量(g/穴)Yield (g/hole)
2020 2021 平均
Average
2020 2021 平均
Average
2020 2021 平均
Average
2020 2021 平均
Average
S1 13.69a 13.16a 13.42a 124.38a 105.66a 115.02a 22.93a 23.38a 23.16a 35.10a 31.38a 33.24a
S2 13.38a 12.75b 13.06a 123.30a 104.33a 113.82a 22.32b 23.28a 22.80b 32.95b 29.69b 31.32b
N1 13.00b 12.63b 12.81b 122.74a 103.73a 113.23b 22.33b 23.02b 22.68b 31.86b 28.94b 30.40b
N2 13.88a 13.25a 13.56a 123.42a 104.61a 114.02ab 22.61ab 23.28ab 22.94a 34.45ab 30.80a 32.63a
N3 13.63ab 13.00ab 13.31ab 125.09a 106.37a 115.73a 22.86a 23.53a 23.20a 35.17a 31.62a 33.39a
N4 13.63ab 12.94ab 13.28ab 124.11a 105.27a 114.69ab 22.71a 23.48a 23.10a 34.62ab 30.79a 32.71a
FS 1.36 4.41* 3.94 0.88 1.85 2.50 32.75** 0.94 18.09** 4.78* 10.09** 9.79**
FN 1.95 1.77 2.99 0.76 1.29 1.93 4.30* 5.72** 7.38** 2.28 4.52* 4.50*
FS×N 0.06 0.10 0.01 0.09 0.07 0.15 0.50 1.28 0.55 0.01 0.22 0.06
[1] Xu H, Zhang W P, Gao Y, et al. Proteomic analysis of embryo development in rice (Oryza sativa). Planta, 2012, 235(4):687-701.
doi: 10.1007/s00425-011-1535-4 pmid: 22015996
[2] 丛宏斌, 姚宗路, 赵立欣, 等. 中国农作物秸秆资源分布及其产业体系与利用路径. 农业工程学报, 2019, 35(22):132-140.
[3] 王金武, 唐汉, 王金峰. 东北地区作物秸秆资源综合利用现状与发展分析. 农业机械学报, 2017, 48(5):1-21.
[4] 余坤, 冯浩, 李正鹏, 等. 秸秆还田对农田土壤水分与冬小麦耗水特征的影响. 农业机械学报, 2014, 45(10):116-123.
[5] Yong Z H, Dong Y L, Zhang X, et al. Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 2015, 78:527-530.
[6] 曾文伟, 石小江, 张礼红, 等. 稻草还田在双季稻生产中的应用效果研究. 作物研究, 2011, 25(3):215-217,222.
[7] Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes:Areview in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 2012, 16(3):1462-1476.
[8] 王鹏, 曾玲玲, 王发鹏, 等. 秸秆还田对烤烟氮积累、分配及利用的影响. 中国土壤与肥料, 2008(4):43-46.
[9] 曹莹菲. 腐解过程中还田秸秆和土壤有机酸、质能及结构变化特征. 杨凌:西北农林科技大学, 2016.
[10] Zeng M F, De V W, Bonten L T C, et al. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environmental Science & Technology, 2017, 51(7):3843-3851.
[11] 魏凤桐, 陶洪斌, 王璞. 不同施氮量对旱稻297产量构成因子影响的研究(Ⅰ)——产量构成、干物质生产与氮素吸收. 中国农业大学学报, 2011, 16(1):30-35.
[12] 何虎, 吴建富, 曾研华, 等. 稻草全量还田下氮肥运筹对双季晚稻产量及其氮素吸收利用的影响. 植物营养与肥料学报, 2014, 20(4):811-820.
[13] 严奉君, 孙永健, 马均, 等. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015, 21(1):23-35.
[14] 裴鹏刚, 张均华, 朱练峰, 等. 秸秆还田耦合施氮水平对水稻光合特性、氮素吸收及产量形成的影响. 中国水稻科学, 2015, 29(3):282-290.
doi: 10.3969/j.issn.1001G7216.2015.03.007
[15] 赵鹏, 陈阜. 豫北秸秆还田配施氮肥对冬小麦氮利用及土壤硝态氮的短期效应. 中国农业大学学报, 2008, 13(4):19-23.
[16] 黄正, 尹明玄, 张荣萍, 等. 秸秆还田和施氮对水稻前期植株性状和土壤Eh值的影响. 杂交水稻, 2022, 37(2):94-99.
[17] 孔丽丽, 侯云鹏, 尹彩侠, 等. 秸秆还田下寒地水稻实现高产高氮肥利用率的氮肥运筹模式. 植物营养与肥料学报, 2021, 27(7):1282-1293.
[18] 朱勇勇, 宋秉羲, 杨王敏, 等. 旱作条件下氮肥减施对水稻生长、产量与经济收益的影响. 生态环境学报, 2021, 30(11):2150-2156.
doi: 10.16258/j.cnki.1674-5906.2021.11.005
[19] 叶文培, 谢小立, 王凯荣, 等. 不同时期秸秆还田对水稻生长发育及产量的影响. 中国水稻科学, 2008, 22(1):65-70.
[20] 刘玲玲, 刘婷, 狄霖, 等. 秸秆全量还田对水稻生长及土壤理化性质的影响. 扬州大学学报(农业与生命科学版), 2018, 39(3):81-85.
[21] 杜康, 谢源泉, 林赵淼, 等. 秸秆还田条件下氮肥对水稻幼苗生长及养分吸收的影响. 南京农业大学学报, 2016, 39(1):18-25.
[22] 王力冬, 赵宏伟, 蔡宏亮, 等. 分蘖期冷水胁迫下施氮量对寒地粳稻分蘖消长和产量形成的影响. 中国土壤与肥料, 2016 (6):86-92.
[23] 杜晓东, 赵宏伟, 刘化龙, 等. 不同氮肥运筹下寒地粳稻产量形成机理的研究. 农业现代化研究, 2011, 32(4):483-486.
[24] 王晓航, 耿艳秋, 金峰, 等. 秸秆还田和地膜覆盖对土壤环境和水稻生长的影响. 华南农业大学学报, 2018, 39(5):1-7.
[25] 郭晓红, 兰宇辰, 胡月, 等. 栽培方式对寒地水稻产量及光合特性的影响. 中国土壤与肥料, 2020(6):220-227.
[26] 翟虎渠, 曹树青, 万建民, 等. 超高产杂交稻灌浆期光合功能与产量的关系. 中国科学(C辑:生命科学), 2002, 32(3):211-217.
[27] 王绍华, 曹卫星, 王强盛, 等. 水稻叶色分布特点与氮素营养诊断. 中国农业科学, 2002, 35(12):1461-1466.
[28] 唐志敏, 刘军, 刘建国. 秸秆还田对长期连作棉花光合速率及叶绿素荧光的影响. 石河子大学学报(自然科学版), 2012, 30(3):302-307.
[29] 彭志芸, 丁峰, 谌洁, 等. 麦油稻轮作秸秆还田与施氮对水稻光合特性及产量的影响. 湖南农业大学学报(自然科学版), 2020, 46(3):253-261.
[30] 李思平, 丁效东, 曾路生, 等. 秸秆还田与化肥减施对水稻生长指标及光合参数的影响. 水土保持学报, 2020, 34(2):208-215.
[31] 王子阳, 陈婉华, 袁伟, 等. 长期秸秆还田与耕作方式对水稻产量及品质的影响. 中国稻米, 2021, 27(3):17-20,29.
doi: 10.3969/j.issn.1006-8082.2021.03.004
[32] 区惠平, 何佳, 宁伟军, 等. 稻草还田在水稻生产上的应用与研究进展. 作物杂志, 2007(6):9-11.
[33] 吕小红, 陈温福, 宋玉婷. 不同株型水稻品种对氮肥的敏感性研究. 沈阳农业大学学报, 2011, 42(1):10-14.
[34] 徐国伟, 吴长付, 刘辉, 等. 麦秸还田及氮肥管理技术对水稻产量的影响. 作物学报, 2007, 33(2):284-291.
[35] 刘世平, 聂新涛, 戴其根, 等. 免耕套种与秸秆还田对水稻生长和稻米品质的影响. 中国水稻科学, 2007, 21(1):71-76.
[36] 马宗国, 卢绪奎, 万丽, 等. 小麦秸秆还田对水稻生长及土壤肥力的影响. 作物杂志, 2003(5):37-38.
[37] 李晓峰, 程金秋, 梁健, 等. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响. 作物学报, 2017, 43(6):912-924.
[38] 王国骄, 宋鹏, 杨振中, 等. 秸秆还田对水稻光合物质生产特征、稻米品质和土壤养分的影响. 作物杂志, 2021(4):67-72.
[39] 崔月峰, 卢铁钢, 孙国才, 等. 秸秆不同还田方式对北方粳稻物质生产和产量的影响. 福建农业学报, 2019, 34(6):630-637.
[1] 徐晓征, 王建军. 光周期影响水稻抽穗的分子机制研究进展[J]. 作物杂志, 2025, (1): 15–25
[2] 周苗苗, 何瑞通, 李兰, 王红鑫, 彭浩源, 张玉博, 张丹, 王进斌, 罗新宁, 祁炳琴. 高密度种植下生长调节剂“玉黄金”对玉米光合特性及产量形成的影响[J]. 作物杂志, 2025, (1): 162–169
[3] 张宝龙, 何军, 张艺, 汤驰, 张宏涛, 廖薇, 李飞. 缓释肥对水稻生长特性、产量及干物质积累的影响[J]. 作物杂志, 2025, (1): 214–219
[4] 闫娜, 谢可冉, 高逖, 胡秋倩, 崔克辉. 增施穗氮肥缓解水稻穗分化期高温伤害的生理机制研究[J]. 作物杂志, 2025, (1): 89–98
[5] 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 1–8
[6] 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126–131
[7] 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147–152
[8] 胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析[J]. 作物杂志, 2024, (6): 218–225
[9] 孙明茂, 刘丽霞, 孙虎, 崔迪. 水稻重组自交系群体花色苷及重要农艺性状分析[J]. 作物杂志, 2024, (6): 26–38
[10] 孙家猛, 高原, 陈虎, 花芹, 林泉祥, 陈庆全, 李金才, 张海涛. 水稻胚乳突变体cse-2的表型分析及基因定位[J]. 作物杂志, 2024, (5): 1–7
[11] 田琴琴, 卓乐, 陈娜娜, 郑德超, 吴小京, 喻鹏, 陈平平, 易镇邪. 钙镁水滑石施用方式对双季稻糙米镉含量与土壤特性的影响[J]. 作物杂志, 2024, (5): 131–139
[12] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[13] 周琦, 吴芳, 王振龙, 徐志鹏, 邓超超, 施志国, 张靖, 宿翠翠, 余亚琳, 周彦芳. 氮肥与生物炭互作对设施番茄生长及根结线虫病害的影响[J]. 作物杂志, 2024, (5): 212–219
[14] 欧英卓, 赵晴, 顾怀应, 周宇阳, 刘长华, 孟丽君. 氯酸盐在水稻硝态氮研究中的应用现状[J]. 作物杂志, 2024, (4): 1–7
[15] 袁帅, 何明娟, 崔璨, 韩羽, 喻鹏, 易镇邪. 早稻基施不同用量钙镁水滑石对湘南双季稻产量和稻米品质影响[J]. 作物杂志, 2024, (4): 113–120
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!