作物杂志,2026, 第1期: 111–117 doi: 10.16035/j.issn.1001-7283.2026.01.014

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

块根分化建成期干旱―复水对甘薯根系活性氧代谢与内源激素的影响

吴昊(), 贺金萍, 廖朝霞, 薛承康, 吴瑶瑶, 李宗芸, 刘敬然()   

  1. 江苏师范大学生命科学学院,221116,江苏徐州
  • 收稿日期:2024-06-20 修回日期:2024-08-14 出版日期:2026-02-15 发布日期:2026-02-10
  • 通讯作者: 刘敬然,研究方向为植物逆境生理,E-mail:liujingran_66@jsnu.edu.cn
  • 作者简介:吴昊,研究方向为植物逆境生理,E-mail:wh2020221615@jsnu.edu.cn
  • 基金资助:
    国家自然科学基金(32272221);国家甘薯产业技术体系(CARS-10);江苏师范大学研究生科研与实践创新计划项目(2024XKT1591);江苏师范大学研究生科研与实践创新计划项目(2024XKT1574)

Effects of Drought and Re-Watering on Reactive Oxygen Species Metabolism and Endogenous Hormones in Sweetpotato Roots during Tuberous Root Differentiation and Formation Stage

Wu Hao(), He Jinping, Liao Zhaoxia, Xue Chengkang, Wu Yaoyao, Li Zongyun, Liu Jingran()   

  1. School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
  • Received:2024-06-20 Revised:2024-08-14 Online:2026-02-15 Published:2026-02-10

摘要: 采用盆栽土培方式在块根分化建成的不同时期开展干旱试验,分析甘薯根系活性氧代谢以及内源激素含量的变化。结果表明:干旱胁迫导致甘薯单株鲜薯重下降,且干旱时间越早影响越大;与正常灌水处理(CK)相比,干旱胁迫下甘薯根系超氧阴离子(O2-. )含量显著降低,过氧化氢(H2O2)含量显著增加;复水后H2O2增长幅度被有效抑制。不同时期的干旱胁迫均会导致甘薯根系过氧化物酶(POD)和过氧化氢酶(CAT)活性下降,抗坏血酸过氧化物酶(APX)活性在甘薯块根分化建成的前中后期遭遇干旱胁迫时显著提升。结果表明甘薯根系遇到干旱胁迫时主要依靠APX清除活性氧,前中期干旱时超氧化物歧化酶(SOD)对活性氧清除也做出较大贡献。待复水后,甘薯根系APX活性降低,而POD活性相对增加,说明复水后甘薯根系通过增强POD活性提高抗氧化能力,以恢复干旱胁迫所带来的伤害。此外,干旱胁迫下甘薯根系游离脯氨酸含量增加,作为渗透调节物质抵御干旱胁迫,复水后根系脯氨酸含量降低。与CK处理相比,D8-14和D15-21处理的甘薯根系脱落酸(ABA)和茉莉酸(JA)含量显著增加,而赤霉素和吲哚乙酸含量显著降低,且降低幅度均小于ABA和JA的增加幅度。在块根分化建成后期进行干旱处理(D22-28)时,甘薯根系的这4种内源激素含量变化均未达到显著水平。说明甘薯在块根分化建成前期和中期受到干旱胁迫时,主要通过升高根系ABA和JA的含量来应对胁迫,但在块根膨大期遭遇干旱胁迫时,仅JA有显著的增加。

关键词: 甘薯, 干旱, 块根分化建成, 内源激素, 活性氧代谢

Abstract:

Drought experiments were carried out in different stages of tuberous root differentiation and formation by potting soil cultivation to analyze the changes of reactive oxygen species metabolism and endogenous hormone content in sweetpotato roots. The results showed that drought stress caused the decrease of sweetpotato fresh tuber weight per plant, and the earlier the drought, the greater the effect. Compared with normal irrigation treatment (CK), the O2-. content in sweetpotato roots was significantly decreased and H2O2 content was significantly increased under drought stress. The increase of H2O2 was effectively inhibited after rehydration. Drought stress at different periods resulted in the decrease of activities of peroxidase (POD) and catalase (CAT) in sweetpotato roots, and ascorbate peroxidase (APX) activity increased significantly in early, middle and late stages of sweetpotato root differentiation and formation under drought stress. The results showed that the root system of sweetpotato mainly relied on APX to remove reactive oxygen species under drought stress, and SOD also made great contribution to the removal of reactive oxygen species during the early and middle stages of drought stress. After rehydration, the APX activity in sweetpotato roots decreased, while POD activity increased, indicating that sweetpotato root recovered the damage caused by drought stress by enhancing POD activity to improve antioxidant capacity after rehydration. In addition, the free proline content in sweetpotato roots increased under drought stress, and as an osmotic regulator to resist drought stress, the proline content in sweetpotato roots decreased after rehydration. Compared with CK, the contents of ABA and JA in sweetpotato roots for the treatments of D8-14 and D15-21 were significantly increased, while the contents of GA and IAA were significantly decreased, and the decreasing ranges were smaller than the increasing ranges of ABA and JA. When drought treatment (D22-28) was carried out at late stage of root differentiation and formation, the contents of these four endogenous hormones in sweetpotato roots did not change significantly. These results indicated that when sweetpotato was subjected to drought stress in early and middle stages of tuberous root differentiation and formation, it responded strongly by increasing the contents of JA and ABA in roots. However, when sweetpotato was subjected to drought stress during tuberous root differentiation and formation stage, only JA had a significant increase.

Key words: Sweetpotato, Drought, Tuber differentiation and formation, Endogenous hormone, Reactive oxygen species metabolism

图1

干旱处理标记 此阶段进行干旱处理7 d。

图2

不同时期干旱对甘薯块根单株鲜薯重的影响 不同的小写字母表示在P < 0.05水平上差异显著。

图3

不同时期干旱―复水对甘薯根系O2-. 、H2O2、MDA和脯氨酸含量的影响 “*”和“**”分别表示在P < 0.05和P < 0.01水平上差异显著或极显著,下同。

图4

不同时期干旱―复水对甘薯根系SOD、POD、CAT和APX活性的影响

图5

不同时期干旱―复水对甘薯根系IAA、GA、JA和ABA含量的影响

[1] Villordon A Q, Clark C A. Variation in virus symptom development and root architecture attributes at the onset of storage root initiation in ‘beauregard’ sweetpotato plants grown with or without nitrogen. PLoS ONE, 2014, 9(9):e107384.
doi: 10.1371/journal.pone.0107384
[2] 王翠娟. 甘薯块根分化建成的氮素效应及与产量形成的关系. 泰安:山东农业大学,2016:92.
[3] Villordon A Q, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. Trends in Plant Science, 2014, 19(7):419-425.
doi: 10.1016/j.tplants.2014.02.002 pmid: 24630073
[4] 张静, 刘伟泉, 夏厚强, 等. 持续土壤干旱对甘薯光合性能及产量的影响. 江苏师范大学学报(自然科学版), 2019, 37(2):21-25.
[5] Wishart J, George T S, Brown L K, et al. Measuring variation in potato roots in both field and glasshouse: the search for useful yield predictors and a simple screen for root traits. Plant and Soil, 2013, 368(1/2):231-249.
doi: 10.1007/s11104-012-1483-1
[6] Prabawardani S, Suparno A. Water use efficiency and yield of sweetpotato as affected by nitrogen and potassium application. Journal of Agricultural Science, 2015, 7(7):128-137.
[7] 张海燕, 段文学, 解备涛, 等. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018, 44(1):126-136.
[8] 李长志, 李欢, 刘庆, 等. 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, 2016, 22(2):511-517.
[9] 张海燕, 解备涛, 段文学, 等. 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 2018, 29(6):1943-1950.
doi: 10.13287/j.1001-9332.201806.024
[10] 张海燕, 汪宝卿, 冯向阳, 等. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46(11):1760-1770.
doi: 10.3724/SP.J.1006.2020.04079
[11] Villordon A, Labonte D, Solis J, et al. Characterization of lateral root development at the onset of storage root initiation in ‘beauregard’ sweetpotato adventitious roots. Horticultural Science, 2012, 47(5):961-968.
[12] 王金强, 李欢, 刘庆, 等. 干旱胁迫对甘薯苗期根系分化和生理特性的影响. 应用生态学报, 2019, 30(9):3155-3163.
[13] Wang B, Zhai H, He S Z, et al. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Scientia Horticulturae, 2016,201:153-166.
[14] Kim Y H, Lim S, Han S H, et al. Expression of both CuZnSOD and APX in chloroplasts enhances tolerance to sulfur dioxide in transgenic sweet potato plants. Comptes Rendus Biologies, 2015, 338(5):307-313.
doi: 10.1016/j.crvi.2015.03.012
[15] Eltayeb A E, Yamamoto S, Habora M E E, et al. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breeding Science, 2011, 61(1):3-10.
doi: 10.1270/jsbbs.61.3
[16] 陆燕元. 干旱胁迫及复水过程中转Cu/Zn SOD和APX基因甘薯生理生化响应机制研究. 杨凌:西北农林科技大学, 2010.
[17] Duan W, Wang Q, Zhang H, et al. Comparative study on carbon- nitrogen metabolism and endogenous hormone contents in normal and overgrown sweetpotato. South African Journal of Botany, 2018,115:199-207.
[18] Khan M A, Gemenet D C, Villordon A. Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Frontiers in Plant Science, 2016,7:1584.
[19] Wang H Y, Wang H L, Shao H B, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 2016,7:67.
[20] Ljung K, Nemhauser J L, Perata P. New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology, 2015,25:130-137.
[21] Chen Y L, Li R K, Ge J F, et al. Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis. Environmental and Experimental Botany, 2021,189:104530.
[22] Mittler R. ROS are good. Trends in Plant Science, 2017, 22(1):11-19.
doi: S1360-1385(16)30112-1 pmid: 27666517
[23] 周旭, 何晓蕾, 曹亮, 等. 苗期不同程度水分胁迫及复水处理对大豆抗氧化特性及产量的影响. 作物杂志, 2023(6):135-142.
[24] 肖钢. 不同时长干旱―复水对夏玉米生理调节机制及产量的影响. 杨凌:西北农林科技大学, 2020.
[25] 徐建欣, 杨洁, 刘实忠, 等. 干旱胁迫对云南陆稻幼苗生理特性的影响. 中国农学通报, 2014, 30(27):145-152.
doi: 10.11924/j.issn.1000-6850.2014-1198
[26] 钟月仙, 黄伟群, 林赵淼, 等. 甘薯对干旱胁迫的生理响应及分子机理研究进展. 安徽农业科学, 2023, 51(1):1-4.
[27] Yin Y M, Qiao S C, Kang Z H, et al. Transcriptome and metabolome analyses reflect the molecular mechanism of drought tolerance in sweet potato. Plants, 2024, 13(3):351.
doi: 10.3390/plants13030351
[28] 龚秋, 王欣, 后猛, 等. PEG-6000模拟干旱胁迫对紫甘薯幼苗生理生化指标的影响. 江西农业学报, 2015, 27(3):6-10.
[29] 曹清河, 李雪华, 戴习彬, 等. PEG-6000模拟干旱胁迫对甘薯近缘野生种Ipomoea trifida (Kunth) G. Don幼苗生理生化指标的影响. 西南农业学报, 2016, 29(11):2536-2541.
[30] Xu X, Van L A A, Vermeer E, et al. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 1998, 117(2):575-584.
doi: 10.1104/pp.117.2.575 pmid: 9625710
[31] Per T S, Khan M I R, Anjum N A, et al. Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environmental and Experimental Botany, 2018,145:104-120.
[32] Singh A, Roychoudhury A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Plant Cell Reports, 2023, 42(6):961-974.
doi: 10.1007/s00299-023-03013-w
[33] Xue C K, Sheng M F, Zhu J Y, et al. Antioxidant capacity and root K+ retention: regulation mechanisms of drought tolerance in sweetpotato. Plant Cell Reports, 2025,44:239.
[34] 张海燕, 解备涛, 姜常松, 等. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选. 作物学报, 2022, 48(2):518-528.
doi: 10.3724/SP.J.1006.2022.14031
[35] He J P, Wu Y Y, Xue C K, et al. Coordinated regulation between jasmonic acid and abscisic acid mediates drought tolerance in sweetpotato. Plant Physiology and Biochemistry, 2025,229:110260.
[1] 孙茹梦, 张男, 殷佳, 汝艳, 景文疆, 张耗. 水稻根系分泌物对干旱胁迫的响应研究进展[J]. 作物杂志, 2026, (1): 1–8
[2] 高艳梅, 冯鹏睿, 陈薇薇, 张萌, 张永清. 抗旱性藜麦幼苗对干旱胁迫的生理响应[J]. 作物杂志, 2026, (1): 182–188
[3] 唐伟, 袁蕊, 张成玲, 赵路宽, 马居奎, 陈晶伟, 杨冬静, 高方圆, 周志林, 孙厚俊. 国家甘薯普查资源徐州圃病毒种类鉴定与分析[J]. 作物杂志, 2025, (6): 254–262
[4] 刘松涛, 蒋超, 史涵博, 闫立楠, 赵海超, 卢海博, 栗慧, 黄智鸿. 玉米ZmPOD基因克隆、生物信息学分析及功能验证[J]. 作物杂志, 2025, (6): 37–44
[5] 孙宪印, 张继波, 吕广德, 亓晓蕾, 孙盈盈, 米勇, 牟秋焕, 尹逊栋, 王瑞霞, 钱兆国, 高明刚. 旱地与补灌条件下不同基因型小麦高产稳产性比较[J]. 作物杂志, 2025, (4): 104–110
[6] 张智涵, 姚杰, 张占田, 卞福花, 张紫然, 陈平, 陈海宁, 刘保友. 5-氨基乙酰丙酸对干旱胁迫下黄瓜苗期生长和土壤酶活性的影响[J]. 作物杂志, 2025, (4): 245–250
[7] 侯晓敏, 申惠波, 董守坤, 闫锋, 董扬, 赵富阳, 李清泉, 左月桃. 甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应[J]. 作物杂志, 2025, (3): 133–140
[8] 吕荣臻, 买合木提·肉孜, 张勇, 买合木提·热木图拉, 牙尔买买提·阿力木, 张建成, 于天一. 外源激素及抑制剂对酸化土壤花生激素含量及生长发育的影响[J]. 作物杂志, 2025, (3): 218–224
[9] 侯晓敏, 闫锋, 董扬, 赵富阳, 李清泉, 季生栋, 刘悦, 兰英. 外源甜菜碱对干旱胁迫下谷子萌发及幼苗生理特性的影响[J]. 作物杂志, 2025, (2): 228–233
[10] 安东升, 赵宝山, 刘洋, 严程明, 孔冉, 黄文甫, 苏俊波. 甘蔗新品种的光合表型与叶片表征对干旱胁迫及复水的响应[J]. 作物杂志, 2025, (1): 208–213
[11] 沈升法, 项超, 孟羽莎, 李兵, 吴列洪. 多用途甘薯品种浙薯33的选育与品质特征[J]. 作物杂志, 2025, (1): 263–268
[12] 庞敏昡, 王瀚, 李志涛, 史宁帆, 蒲转芳, 张锋, 姚攀锋, 毕真真, 白江平, 孙超. 不同水分处理下施用立收谷对马铃薯品质的影响[J]. 作物杂志, 2024, (6): 132–139
[13] 肖晓, 钟坤权, 屠小菊, 易镇邪. 低温锻炼持续时间对菜用甘薯幼苗耐寒生理特性的影响[J]. 作物杂志, 2024, (5): 140–145
[14] 张旭丽, 王瑞军, 郗小倩, 冯学金, 李洪. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响[J]. 作物杂志, 2024, (5): 204–211
[15] 黄艳霞, 陈根辉, 林建富, 郭其茂, 黄康德, 四郎群措, 谢丽君, 林子龙. 烟地套种甘薯龙紫9号的高效栽培技术研究[J]. 作物杂志, 2024, (5): 228–234
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!