作物杂志,2025, 第3期: 218–224 doi: 10.16035/j.issn.1001-7283.2025.03.030

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

外源激素及抑制剂对酸化土壤花生激素含量及生长发育的影响

吕荣臻1(), 买合木提·肉孜2, 张勇2, 买合木提·热木图拉2, 牙尔买买提·阿力木2, 张建成3(), 于天一3()   

  1. 1莱阳市农业技术推广中心,265200,山东烟台
    2喀什地区农业技术推广中心,844000,新疆喀什
    3山东省花生研究所,266100,山东青岛
  • 收稿日期:2024-03-05 修回日期:2024-08-14 出版日期:2025-06-15 发布日期:2025-06-03
  • 通讯作者: 张建成,主要从事花生育种、食品质量与安全相关研究,E-mail:13863920622@163.com;于天一为共同通信作者,主要从事花生栽培生理相关研究,E-mail:tianyi_1984@126.com
  • 作者简介:吕荣臻,主要从事农业技术推广工作,E-mail:13964592979@163.com
  • 基金资助:
    新疆维吾尔自治区重大科技专项“新疆花生绿色丰产增效及农机农艺融合技术研发”(2022A02008-4)

Effects of Exogenous Hormones and Inhibitors on Hormone Content, Growth and Development of Peanut in Acidified Soil

Lü Rongzhen1(), Maihemuti∙Rouzi 2, Zhang Yong2, Maihemuti∙Remutula 2, Yaermaimaiti∙Alimu 2, Zhang Jiancheng3(), Yu Tianyi3()   

  1. 1Agricultural Technology Promotion Center of Laiyang, Yantai 265200, Shandong, China
    2Agricultural Technology Promotion Center of Kashgar, Kashgar 844000, Xinjiang, China
    3Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2024-03-05 Revised:2024-08-14 Online:2025-06-15 Published:2025-06-03

摘要:

为明确外源激素对土壤酸化胁迫下花生生长发育的调控机制,采用盆栽试验,研究了外源施用生长素(IAA)、赤霉素(GA3)、生长素抑制剂(TIBA)和赤霉素抑制剂(PAC)对酸化土壤花生植株激素含量、形态特征、养分吸收及产量的影响。结果表明,与对照相比,施用IAA提高了关键生育时期花生叶片和荚果中IAA含量,改善了荚果氮素营养,提高了收获指数、百果重和出米率,增产显著。施用GA3导致花生主茎和侧枝冗余生长,抑制了磷、钾和钙在荚果中的积累,显著降低了单株有效果数和收获指数,导致减产。施用TIBA和PAC均不利于花生植株和根系生长,抑制了养分吸收,显著减产,其中PAC的负面效应更大,花生几乎无法正常生长。综上,外源施用IAA是缓解花生土壤酸化胁迫的有效措施,而GA3、TIBA和PAC不利于酸化土壤花生生长发育。

关键词: 酸化土壤, 外源激素, 激素抑制剂, 花生, 形态指标, 内源激素

Abstract:

To clarify the regulatory mechanism of exogenous hormones on peanut growth and development under soil acidified stress, a pot experiment was conducted to investigate the effects of exogenous application of auxin (IAA), gibberellins (GA3), auxin inhibitor (TIBA) and gibberellin inhibitor (PAC) on the hormone content, morphological characteristics, nutrient absorption of peanut plants and yield in acidified soil. The results showed that, compared with the control, the application of IAA increased the IAA contents in leaves and pods during the critical growth period, improved pod nitrogen nutrition, increased harvest index, 100-pod weight and shelled kernel rate, which resulted in a higher yield. The application of GA3 led to the redundant growth of main stems and lateral branches, the reduction of phosphorus, potassium and calcium accumulation in pods and the decrease of effective pods per plant and harvest index and further reduced yield. The applications of TIBA and PAC were not conducive to the growth of peanut plants and roots, inhibited nutrient absorption, and significantly reduced yield. The negative effects of PAC were even greater, and peanuts could hardly grow normally. To sum up, application of exogenous IAA was an effective measure to alleviate the soil acidified stress for peanut, while GA3, TIBA and PAC were not conducive to the growth and development of peanuts on acidified soil.

Key words: Acidified soil, Exogenous hormone, Hormone inhibitor, Peanut, Morphological index, Endogenous hormone

图1

外源激素及激素抑制剂对花生叶片和荚果激素含量的影响 不同小写字母表示处理间差异达P < 0.05显著水平,下同。

图2

外源激素及激素抑制剂对花生植株形态的影响

表1

外源激素及激素抑制剂对花生根系形态的影响

指标
Index
根直径
Root diameter
结荚期Pod-setting 成熟期Maturity
CK IAA TIBA GA3 PAC CK IAA TIBA GA3 PAC
根长
Root
length
(cm)
0~0.5 mm 441.90a 440.12a 265.11b 451.84a 355.67ab 13 775.65a 13 511.13a 6242.60b 13 198.39a 4327.48b
0.5~1 mm 105.84a 118.90a 113.21a 106.72a 106.09a 2681.68a 2241.02a 1975.85a 2541.59a 1670.78a
>1 mm 6.37ab 7.22ab 7.90a 6.24b 7.41ab 696.16bc 554.12c 961.74a 846.64ab 914.42ab
总计 554.11a 566.24a 386.22b 564.79a 469.18ab 17 153.49a 16 306.28a 9180.20b 16 586.62a 6912.67b
根表面积
Root
surface
area
(cm2)
0~0.5 mm 38.77ab 38.09ab 24.39c 39.96a 31.11bc 1181.79a 1051.56a 570.53b 1116.67a 375.68b
0.5~1 mm 23.26a 26.39a 25.22a 23.15a 23.45a 574.64a 483.96a 434.43a 562.74a 374.31a
>1 mm 3.05b 3.01b 3.76ab 3.55ab 4.02a 376.18b 335.78b 538.26a 454.03ab 443.75ab
总计 65.08a 67.49a 53.38b 66.66a 58.58ab 2132.60a 1871.29ab 1543.22bc 2133.43a 1193.73c
根体积
Root
volume
(cm3)
0~0.5 mm 0.32a 0.31a 0.21b 0.33a 0.26b 9.48a 8.00a 4.88b 9.01a 3.16b
0.5~1 mm 0.42a 0.48a 0.46a 0.42a 0.43a 10.17a 9.42ab 7.89ab 9.73a 6.92b
>1 mm 0.16ab 0.2ab 0.21ab 0.16b 0.21a 26.96a 21.30a 32.37a 25.69a 25.64a
总计 0.90a 1.00a 0.89a 0.90a 0.90a 46.61a 38.73a 45.14a 44.43a 35.73a

图3

外源激素及激素抑制剂对花生植株养分累积量的影响

表2

外源激素及激素抑制剂对花生植株不同器官养分分配的影响

处理
Treatment
N P K Ca
荚果
Pod
其他器官
Other organs
荚果
Pod
其他器官
Other organs
荚果
Pod
其他器官
Other organs
荚果
Pod
其他器官
Other organs
CK 59.79ab 40.21bc 62.45a 37.55c 50.28a 49.72d 11.57ab 88.43bc
IAA 64.29ab 35.71bc 69.23a 30.77c 47.59ab 52.41cd 10.05b 89.95b
TIBA 67.49a 32.51c 62.09a 37.91c 44.58b 55.42c 14.02a 85.98c
GA3 55.55b 44.45b 51.17b 48.83b 37.62c 62.38b 9.46b 90.54b
PAC 19.94c 80.06a 19.68c 80.32a 13.19d 86.81a 4.03c 95.97a

表3

外源施用激素及激素抑制剂对花生产量、产量构成因素及干物质重的影响

处理
Treatment
单株有效果数
Effective pods
per plant
百果重
100-pod
weight (g)
出米率
Shelled kernel
rate (%)
其他器官干重(g/株)
Dry weight of other
organs (g/plant)
产量(g/株)
Yield
(g/plant)
生物产量(g/株)
Biomass yield
(g/plant)
收获指数
Harvest
index (%)
CK 40.17a 47.71b 61.84bc 24.89b 19.17b 44.06a 43.50b
IAA 37.67a 55.79a 68.45a 19.95c 21.02a 40.97a 51.30a
TIBA 29.67b 56.86a 62.59bc 18.71c 16.87c 35.58b 47.42b
GA3 26.80b 57.99a 65.29ab 29.38a 15.54c 44.92a 34.60c
PAC 12.17c 26.33c 60.07c 15.93c 3.20d 19.13c 16.75d
[1] 杨帆, 贾伟, 杨宁, 等. 近30年我国不同地区农田耕层土壤的pH变化特征. 植物营养与肥料学报, 2023, 29(7):1213-1227.
[2] 杨伟波, 李东霞, 董志国, 等. 铝胁迫对海南花生根系的研究初报. 热带农业科学, 2013, 33(11):12-15.
[3] Dong Z X, Li Y B, Xiao X M, et al. Silicon effect on growth, nutrient uptake, and yield of peanut (Arachis hypogaea L.) under aluminum stress. Journal of plant nutrition, 2018, 41(15):2001-2008.
[4] Yan L, Riaz M, Li S, et al. Harnessing the power of exogenous factors to enhance plant resistance to aluminum toxicity; a critical review. Plant Physiology and Biochemistry, 2023,203:108064.
[5] 于天一, 王春晓, 张思斌, 等. 土壤酸胁迫下不同花生品种(系)钙吸收、分配及钙效率差异. 核农学报, 2018, 32(4):751-759.
doi: 10.11869/j.issn.100-8551.2018.04.0751
[6] Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell, 2009, 136(6):1005-1016
doi: 10.1016/j.cell.2009.03.001 pmid: 19303845
[7] Woodward A W, Bonnie B. Auxin: regulation, action, and interaction. Annals of Botany, 2005, 95(5):707-735.
doi: 10.1093/aob/mci083 pmid: 15749753
[8] Liu G C, Gao S, Tian H Y, et al. Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLoS Genetics, 2016, 12(10):1006360.
[9] Zhang M L, Lu X D, Li C L, et al. Auxin efflux carrier ZmPGP 1 mediates root growth inhibition under aluminum stress. Plant Physiology, 2018, 177(2):819-832.
[10] Peng Q, Wang H Q, Tong J H, et al. Effects of indole-3-acetic acid and auxin transport inhibitor on auxin distribution and development of peanut at pegging stage. Scientia Horticulturae, 2013, 162(23):76-81.
[11] 林葆, 周卫. 花生荚果钙素吸收调控及其与钙素营养效率的关系. 核农学报, 1997, 11(3):168-172.
[12] 宋兆锋, 陈小姝, 李美君, 等. 低温胁迫下赤霉素对花生萌发特性的影响及转录组分析. 花生学报, 2023, 52(3):8-19.
[13] 邹晓霞, 张晓军, 王铭伦, 等. 土壤容重对花生根系生长性状和内源激素含量的影响. 植物生理学报, 2018, 54(6):1130-1136.
[14] 骆兵, 刘风珍, 万勇善, 等. 不同花生品种(系)荚果和子仁内源激素含量变化与干物质积累特征分析. 作物学报, 2013, 39 (11):2083-2093.
doi: 10.3724/SP.J.1006.2013.02083
[15] Khan A L, Waqas M, Hussain J, et al. Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of penicillium janthinellum LK5 and comparison with exogenous GA3. Journal of Hazardous Materials, 2015, 295(15):70-78.
[16] 于天一, 王春晓, 路亚, 等. 不同改良剂对酸化土壤花生钙素吸收利用及生长发育的影响. 核农学报, 2018, 32(8):1619-1626.
doi: 10.11869/j.issn.100-8551.2018.08.1619
[17] 周恩生, 陈家驹, 王飞, 等. 钙胁迫下花生荚果微区特征及植株生理生化反应变化. 福建农业学报, 2008, 23(3):318-321.
[18] 张新友, 徐静, 汤丰收, 等. 花生种间杂种胚胎发育及内源激素变化. 作物学报, 2013, 39(6):1127-1133.
[19] Achard P, Gusti A, Cheminant S, et al. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Current Biology, 2009, 19(14):1188-1193.
[20] 侯风坤, 张秀荣, 刘风珍, 等. 外源GA和ABA对花生籽仁皱缩变异品系荚果生长的影响. 西北植物学报, 2018, 38(4):661-670.
[21] 张佳蕾, 王媛媛, 孙莲强, 等. 多效唑对不同品质类型花生产量、品质及相关酶活性的影响. 应用生态学报, 2013, 24(10):2850-2856.
[1] 侯晓敏, 申惠波, 董守坤, 闫锋, 董扬, 赵富阳, 李清泉, 左月桃. 甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应[J]. 作物杂志, 2025, (3): 133–140
[2] 金彦君, 祝洪沙, 李成东, 王金禹, 张忠福, 万婷丽, 周爱爱, 撒刚, 程李香, 刘娟, 余斌. 外源激素对雾培马铃薯叶片气孔密度及块茎产量的调控[J]. 作物杂志, 2024, (6): 205–211
[3] 于沐, 杨海棠, 胡延岭, 刘软枝, 石彦召, 李盼, 韩艳红, 朱桢桢, 李世忠, 郭振超. 花生产量组成的基因型与环境互作及稳定性分析[J]. 作物杂志, 2024, (6): 55–60
[4] 刘跃, 贾永红, 于月华, 张金汕, 王润琪, 李丹丹, 石书兵. 北疆氮肥运筹对花生生长发育、产量及品质的影响[J]. 作物杂志, 2024, (3): 119–126
[5] 孙悦颖, 刘景辉, 米俊珍, 赵宝平, 李英浩, 朱珊珊. 乳酸菌复合制剂对燕麦的促生作用研究[J]. 作物杂志, 2024, (2): 122–128
[6] 修俊杰, 刘学良. 水氮互作对花针期花生生理特性及生长的影响[J]. 作物杂志, 2023, (6): 174–180
[7] 李菁华, 杨广东, 胡尊艳, 郝智勇, 孙邦升, 陈林琪, 王雪扬, 李琬, 万书明. 不同时期喷施外源ABA对小豆碳代谢、内源激素及产量构成因素的影响[J]. 作物杂志, 2023, (3): 175–182
[8] 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188–194
[9] 崔亚男, 张曼, 张朋磊, 刘兵, 郝西, 臧秀旺. H2O2对吸胀冷害下花生种子萌发的影响[J]. 作物杂志, 2022, (4): 236–241
[10] 施娴, 李洪有, 卢丙越, 周云, 赵继菊, 赵孟丽, 梁京, 孟衡玲. 3个苦荞品种对盐胁迫的生理响应及耐受性评价[J]. 作物杂志, 2022, (3): 149–154
[11] 潘飞飞, 唐蛟, 孙壮, 陈碧华, 王广印, 吴大付, 王威. 沼液替代化肥对冬小麦产量的影响[J]. 作物杂志, 2022, (3): 174–180
[12] 程琴, 谭秦亮, 李佳慧, 朱鹏锦, 周全光, 欧克纬, 卢业飞, 吕平, 庞新华. 不同宿根年限甘蔗品种内源激素及酶活性分析[J]. 作物杂志, 2022, (3): 181–186
[13] 刘卫星, 范小玉, 张枫叶, 贺群岭, 陈雷, 李可, 吴继华. 不同前茬和种衣剂用量对花生病虫害及产量的影响[J]. 作物杂志, 2021, (6): 199–204
[14] 蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展[J]. 作物杂志, 2021, (5): 1–5
[15] 于天一, 郑亚萍, 邱少芬, 姜大奇, 吴正锋, 郑永美, 孙学武, 沈浦, 王才斌, 张建成. 酸化土壤施钙对不同花生品种(系)钙吸收、利用及产量的影响[J]. 作物杂志, 2021, (4): 80–85
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!