作物杂志,2026, 第1期: 1–8 doi: 10.16035/j.issn.1001-7283.2026.01.001

• 专题综述 •    下一篇

水稻根系分泌物对干旱胁迫的响应研究进展

孙茹梦(), 张男, 殷佳, 汝艳, 景文疆, 张耗()   

  1. 扬州大学江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点实验室/江苏省粮食作物现代产业技术协同创新中心,225009,江苏扬州
  • 收稿日期:2025-03-07 修回日期:2025-03-20 出版日期:2026-02-15 发布日期:2026-02-10
  • 通讯作者: 张耗,主要从事水稻高产生理与栽培管理研究,E-mail:haozhang@yzu.edu.cn
  • 作者简介:孙茹梦,主要从事水稻栽培生理研究,E-mail:sunrumeng200112@163.com
  • 基金资助:
    国家自然科学基金项目(32272197);国家自然科学基金项目(32071944);江苏高校优势学科建设工程资助项目(PAPD)

Research Progress on Response of Rice Root Exudates to Drought Stress

Sun Rumeng(), Zhang Nan, Yin Jia, Ru Yan, Jing Wenjiang, Zhang Hao()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University /Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2025-03-07 Revised:2025-03-20 Online:2026-02-15 Published:2026-02-10

摘要:

水分是影响水稻生长发育的关键因素,探索水分高效利用机制对水稻生产至关重要。在植物生长发育过程中,根系会向周围环境分泌各类化合物,即根系分泌物。这些物质通过引发根际效应调控植物的生长与发育,是植物生长过程中不可或缺的部分。本文系统综述了根系分泌物的类型、生成途径及其在干旱胁迫下的生理响应机制,通过深入分析水稻根系分泌物在水分调控中的作用机理,指出当前研究中存在的问题,并对未来的研究方向提出建议。

关键词: 水稻, 干旱胁迫, 根系分泌物, 根际环境

Abstract:

Water is a key factor influencing the growth and development of rice. Exploring mechanisms for efficient water utilization is vital for rice production. During the process of plant growth and development, the root system secretes various compounds into the surrounding environment, known as root exudates. These substances regulate plant growth and development by triggering rhizosphere effects and constitute an indispensable part of plant growth process. This paper systematically reviews the types, biosynthetic pathways of root exudates, and their physiological response mechanisms under drought stress. By providing an in-depth analysis of the function mechanisms of rice root exudates in water regulation, this review identifies existing problems in current research and proposes suggestions for future research directions.

Key words: Rice, Drought stress, Root exudates, Rhizosphere environment

图1

水稻根系分泌物的种类、产生途径及其生物学功能

图2

水稻根系分泌物在水分调控中的作用机制

[1] Luo W Q, Chen M T, Kang Y H, et al. Analysis of crop water requirements and irrigation demands for rice: implications for increasing effective rainfall. Agricultural Water Management, 2022,260:107285.
[2] Zeigler R S, Barclay A. The relevance of rice. Rice, 2008,1:3-10.
[3] 吕银斐, 任艳芳, 刘冬, 等. 不同水分管理方式对水稻生长、产量及品质的影响. 天津农业科学, 2016, 22(1):106-110.
[4] Badri D V, Vivanco J M. Regulation and function of root exudates. Plant,Cell & Environment, 2009, 32(6):666-681.
doi: 10.1111/pce.2009.32.issue-6
[5] 常二华, 杨建昌. 根系分泌物及其在植物生长中的作用. 耕作与栽培, 2006(5):13-16.
[6] Rovira A D. Plant root exudates. The Botanical Review, 1969,35:35-57.
[7] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1):233-266.
doi: 10.1146/arplant.2006.57.issue-1
[8] Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. Journal of Environmental Quality, 2007, 36(3):904-912.
doi: 10.2134/jeq2006.0425sc pmid: 17485723
[9] 王雨菡, 陈莲, 张培珍, 等. 根系分泌物与根际微生物对土壤重金属污染的响应与修复作用(综述). 江苏农业科学, 2024, 52(5):19-27.
[10] Araujo A S F, Pereira A P A, de Medeiros E V, et al. Root-driven microbiome memory enhances plant disease resistance. Trends in Plant Science, 2025,12:3.
[11] Gu Y, Wang X F, Yang T J, et al. Chemical structure predicts the effect of plant‐derived low‐molecular weight compounds on soil microbiome structure and pathogen suppression. Functional Ecology, 2020, 34(10):2158-2169.
doi: 10.1111/fec.v34.10
[12] Jones D L. Organic acids in the rhizosphere-a critical review. Plant and Soil, 1998, 205(1):25-44.
doi: 10.1023/A:1004356007312
[13] Jones D L, Dennis P G, Owen A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil, 2003, 248(1/2):31-41.
doi: 10.1023/A:1022304332313
[14] 王雪, 段玉玺, 陈立杰, 等. 大豆根系分泌物中氨基酸组分与抗大豆胞囊线虫的相关性研究. 沈阳农业大学学报, 2008, 39 (6):677-681.
[15] 孙冰清. 根系分泌物及其组分对土壤中多环芳烃的活化作用. 南京:南京农业大学, 2011.
[16] Erb M, Kliebenstein D J. Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiology, 2020, 184(1):39-52.
doi: 10.1104/pp.20.00433 pmid: 32636341
[17] Sandhu N, Raman K A, Torres R O, et al. Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiology, 2016, 171 (4):2562-2576.
doi: 10.1104/pp.16.00705 pmid: 27342311
[18] Ma W M, Tang S H, Dengzeng Z M, et al. Root exudates contribute to belowground ecosystem hotspots: a review. Frontiers in Microbiology, 2022,13:937940.
[19] 李勇, 黄小芳, 丁万隆.根系分泌物及其对植物根际土壤微生态环境的影响. 华北农学报, 2008, 23(增):182-186.
[20] Phillips D A, Fox T C, King M D, et al. Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 2004, 136(1):2887-2894.
doi: 10.1104/pp.104.044222 pmid: 15347793
[21] Murata Y, Iyama J, Honma T. Studies on the photosynthesis of rice plants: XIII. On the interrelationships between photosynthetic activity of the leaf and physiological activity of the root. Japanese Journal of Crop Science, 1965, 34(2):148-153.
doi: 10.1626/jcs.34.148
[22] 李敏, 赵熙州, 王好运, 等. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响. 林业科学, 2022, 58(7):63-72.
[23] Meier I C, Finzi A C, Phillips R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 2017,106:119-128.
[24] Scheffknecht S, Mammerler R, Steinkellner S, et al. Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza, 2006, 16(5):365-370.
doi: 10.1007/s00572-006-0048-7 pmid: 16528569
[25] 李佳佳, 樊妙春, 上官周平. 植物根系分泌物主要生态功能研究进展. 植物学报, 2020, 55(6):788-796.
[26] 杜思垚, 方娅婷, 鲁剑巍. 根系分泌物对作物养分吸收利用的影响研究进展. 华中农业大学学报, 2023, 42(2):147-157.
[27] Tang Y, Xia P G. WRKY transcription factors: key regulators in plant drought tolerance. Plant Science, 2025,359:112647.
[28] Chen Y E, Xia P G. NAC transcription factors as biological macromolecules responded to abiotic stress: a comprehensive review. International Journal of Biological Macromolecules, 2025,308:142400.
[29] Zhang R R, Luo S L, Li L, et al. The role of PYL genes as core components of abscisic acid signaling in plant abiotic stress response. Horticultural Plant Journal. (2025-06-10)[2025-06-12]. https://doi.org/10.1016/j.hpj.2025.06.006.
[30] Sahil R, Pal V, Kharat A S, et al. A multi-omics meta-analysis of rhizosphere microbiome reveals growth-promoting marker bacteria at different stages of legume development. Plant,Cell & Environment. (2025-02-02)[2025-06-12]. https://doi.org/10.1111/pce.15429
[31] Sircar S, Parekh N. Meta-analysis of drought-tolerant genotypes in Oryza sativa: a network-based approach. PLoS ONE, 2019, 14(5):e0216068.
doi: 10.1371/journal.pone.0216068
[32] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 2003, 30(3):239-264.
doi: 10.1071/FP02076
[33] 徐国伟, 陆大克, 王贺正, 等. 施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响. 中国生态农业学报, 2018, 26(4):516-525.
[34] Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1):7.
doi: 10.1104/pp.109.1.7 pmid: 12228579
[35] Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 2002, 245(1):201-213.
[36] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57(1):781-803.
doi: 10.1146/arplant.2006.57.issue-1
[37] Zhou C, Wu S J, Li C C, et al. Response mechanisms of woody plants to high-temperature stress. Plants, 2023, 12(20):3643.
doi: 10.3390/plants12203643
[38] 毛梦雪, 朱峰. 根系分泌物介导植物抗逆性研究进展与展望. 中国生态农业学报, 2021, 29(10):1649-1657.
[39] 黄春雪, 王希, 赵春雷. 糖料作物对干旱胁迫的形态、生理及基因响应研究进展. 中国糖料, 2024, 46(1):48-56.
[40] 辛建攀, 马思思, 田如男. 梭鱼草叶片抗氧化酶、抗坏血酸-谷胱甘肽循环与乙二醛酶系统对铅胁迫的响应. 西北植物学报, 2023, 43(10):1723-1731.
[41] 张金菊, 田青, 郭有燕, 等. 黑果枸杞根系对干旱胁迫响应的生理机制. 甘肃农业大学学报, 2023, 58(4):183-191.
[42] Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53(1):247-273.
doi: 10.1146/arplant.2002.53.issue-1
[43] Biscarini F, Cozzi P, Casella L, et al. Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS ONE, 2016, 11 (5):e0155425.
doi: 10.1371/journal.pone.0155425
[44] Liu S P, Wang J R, Wang L, et al. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Research, 2009, 19(9):1110-1119.
doi: 10.1038/cr.2009.70
[45] 张怡, 李建国, 张文君. 水稻根系分泌物研究进展. 植物营养与肥料学报, 2024, 30(10):1987-1999.
[46] Basirat M, Mousavi S M, Abbaszadeh S, et al. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant and Soil, 2019, 445(4):565-575.
doi: 10.1007/s11104-019-04334-0
[47] Zhou N, Zhao S, Tian C Y. Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiology Letters, 2017, 364(11):fnx091.
[48] Ullah A, Tariq A, Zeng F J, et al. Drought priming improves tolerance of Alhagi sparsifolia to subsequent drought: a coordinated interplay of phytohormones, osmolytes, and antioxidant potential. Plant Stress, 2024,12:100469.
[49] Albert K R, Ro-Poulsen H, Mikkelsen T N, et al. Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant,Cell & Environment, 2011, 34(7):1207-1222.
[50] Dubois M, Van D B L, Inzé D. The pivotal role of ethylene in plant growth. Trends in Plant Science, 2018, 23(4):311-323.
doi: S1360-1385(18)30015-3 pmid: 29428350
[51] Morgan P W, Drew M C. Ethylene and plant responses to stress. Physiologia Plantarum, 1997, 100(3):620-630.
doi: 10.1111/ppl.1997.100.issue-3
[52] Jones D L, Nguyen C, Finlay R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 2009, 321(1/2):5-33.
[53] Moore J A M, Jiang J, Patterson C M, et al. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes. Journal of Ecology, 2015, 103(6):1442-1453.
doi: 10.1111/jec.2015.103.issue-6
[54] Zhou X G, Zhang J Y, u Rahman M K, et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant, 2023, 16(5):849-864.
doi: 10.1016/j.molp.2023.03.009
[55] Han M G, Chen Y, Li R, et al. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist, 2022, 234(3):837-849.
doi: 10.1111/nph.v234.3
[56] Coskun D, Britto D T, Shi W M, et al. How plant root exudates shape the nitrogen cycle. Trends in Plant Science, 2017, 22(8):661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419
[57] Korenblum E, Dong Y, Szymanski J, et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(7):3874-3883.
[58] Kumar G A, Kumar S, Bhardwaj R, et al. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions. Frontiers in Plant Science, 2024,14:1297706.
[59] Xie J B, Dawwam G E, Sehim A E, et al. Drought stress triggers shifts in the root microbial community and alters functional categories in the microbial gene pool. Frontiers in Microbiology. 2021,12:744897.
[1] 刘晴, 孙露宏, 高世伟, 刘宇强, 常汇琳, 马成, 王婧泽, 王翠玲, 聂守军. 水稻叶片的生理性状和形态特征受铬胁迫的影响研究[J]. 作物杂志, 2026, (1): 143–151
[2] 高艳梅, 冯鹏睿, 陈薇薇, 张萌, 张永清. 抗旱性藜麦幼苗对干旱胁迫的生理响应[J]. 作物杂志, 2026, (1): 182–188
[3] 闸雯俊, 李行润, 周发松, 冯芳, 吴边, 陈俊孝, 石少阶, 周雷, 王静, 游艾青. 水稻光温敏不育系19XS的选育及其特性分析[J]. 作物杂志, 2026, (1): 9–14
[4] 陈雷, 唐茂艳, 张战营, 钟晓媛, 高国庆, 张晓丽, 梁天锋, 潘英华. 花期高温胁迫下水稻种质资源的外观品质分析与评价[J]. 作物杂志, 2025, (6): 132–139
[5] 孙强, 阮辛森, 周志豪, 孙会娟, 徐冉, 凌冬, 赵翠荣. 不同类型水稻品种表型性状遗传多样性分析[J]. 作物杂志, 2025, (6): 28–36
[6] 刘松涛, 蒋超, 史涵博, 闫立楠, 赵海超, 卢海博, 栗慧, 黄智鸿. 玉米ZmPOD基因克隆、生物信息学分析及功能验证[J]. 作物杂志, 2025, (6): 37–44
[7] 滕文, 叶凡, 周舟, 王屿乐, 刘立军. 小麦和油菜秸秆还田处理对盐胁迫下水稻产量和品质的影响[J]. 作物杂志, 2025, (5): 11–18
[8] 植藓闳, 纪子贤, 许镇旺, 谭恩, 梁日深, 马帅鹏, 唐辉武. 水稻CYP450家族基因Os78A5的表达分析[J]. 作物杂志, 2025, (5): 135–141
[9] 彭彬峰, 陆楚盛, 尹媛红, 朱菲菲, 叶群欢, 潘俊峰, 刘彦卓, 胡香玉, 胡锐, 李妹娟, 王昕钰, 梁开明, 傅友强. 高温胁迫下铵硝混配营养促进水稻生长的生理机制[J]. 作物杂志, 2025, (5): 165–170
[10] 都晗萌, 陈雨琼, 刘若彤, 陈英龙, 戴其根, 张洪程, 廖萍. 盐胁迫下喷施矮壮素和施用石膏对水稻产量及倒伏特性的影响[J]. 作物杂志, 2025, (5): 29–34
[11] 孙宪印, 张继波, 吕广德, 亓晓蕾, 孙盈盈, 米勇, 牟秋焕, 尹逊栋, 王瑞霞, 钱兆国, 高明刚. 旱地与补灌条件下不同基因型小麦高产稳产性比较[J]. 作物杂志, 2025, (4): 104–110
[12] 杨林生, 习敏, 涂德宝, 李忠, 周永进, 许有尊, 孙雪原, 吴文革. 长江三角洲地区主要类型水稻生产资源投入及碳、氮足迹评估[J]. 作物杂志, 2025, (4): 150–156
[13] 陶祖豪, 王慰亲, 郑华斌, 向军, 唐启源. 水肥及化控对晚稻有序机抛秧秧苗素质的影响[J]. 作物杂志, 2025, (4): 224–230
[14] 张智涵, 姚杰, 张占田, 卞福花, 张紫然, 陈平, 陈海宁, 刘保友. 5-氨基乙酰丙酸对干旱胁迫下黄瓜苗期生长和土壤酶活性的影响[J]. 作物杂志, 2025, (4): 245–250
[15] 侯晓敏, 申惠波, 董守坤, 闫锋, 董扬, 赵富阳, 李清泉, 左月桃. 甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应[J]. 作物杂志, 2025, (3): 133–140
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!