作物杂志,2026, 第1期: 152–159 doi: 10.16035/j.issn.1001-7283.2026.01.019

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

免耕秸秆覆盖对半干旱区土壤团聚体稳定性和玉米产量的影响

马小明1(), 齐翔鲲1, 谭雪1, 史孟豫1, 王玉凤1,2, 付健1,2(), 杨克军1,2()   

  1. 1黑龙江八一农垦大学农学院,163319,黑龙江大庆
    2黑龙江省现代农业栽培技术与作物种质改良重点实验室,163319,黑龙江大庆
  • 收稿日期:2024-12-18 修回日期:2025-03-29 出版日期:2026-02-15 发布日期:2026-02-10
  • 通讯作者: 杨克军,研究方向为寒地玉米产量品质与生理生态,E-mail:byndykj@163.com;付健为共同通信作者,研究方向为玉米高产技术创新及农田土壤改良,E-mail:fujian_hl@163.com
  • 作者简介:马小明,研究方向为寒地作物全程机械化优质高效生产,E-mail:209421254@qq.com
  • 基金资助:
    黑龙江自然科学基金(YQ2024C043);黑龙江省领军人才梯队后备带头人资助项目

Effects of No-tillage with Straw Mulching on Soil Aggregate Stability and Maize Yield in Semi-Arid Region

Ma Xiaoming1(), Qi Xiangkun1, Tan Xue1, Shi Mengyu1, Wang Yufeng1,2, Fu Jian1,2(), Yang Kejun1,2()   

  1. 1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation Techniques and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
  • Received:2024-12-18 Revised:2025-03-29 Online:2026-02-15 Published:2026-02-10

摘要: 为解决半干旱区风沙土壤风蚀导致的土壤结构变差、有机碳含量下降及玉米低产等问题,于黑龙江省杜尔伯特蒙古族自治县进行长期田间定位试验,设置旋耕垄作(CK)、1年免耕秸秆覆盖还田(T1)、连续3年免耕秸秆覆盖还田(T2)和连续7年免耕秸秆覆盖还田(T3)4种处理,分析各处理对不同土层土壤团聚体分布特征、有机碳积累及玉米产量的影响。结果表明,在0~30 cm土层,相较于其他处理,T3处理下土壤容重明显降低,含水量则显著增高;同时,T3处理提高了>0.25 mm粒级水稳性团聚体百分比含量、有机碳含量及贡献率,并增大了平均重量直径和几何平均直径。免耕秸秆覆盖还田可显著提高玉米产量,与CK处理相比,各处理增幅在14.98%~39.54%。综上,免耕结合秸秆覆盖还田有助于提升半干旱区土壤团聚体稳定性、各粒级团聚体有机碳含量及玉米产量,其中T3处理效果最佳。

关键词: 玉米, 免耕秸秆覆盖, 土壤团聚体, 有机碳, 平均重量直径, 几何平均直径, 产量

Abstract:

To address the issues of soil structure deterioration, decreased organic carbon content, and low maize yield caused by soil wind erosion in semi-arid aeolian sandy regions, a long-term field positioning experiment was conducted in Durbod Mongolian Autonomous County, Heilongjiang Province. Four treatments were established: rotary tillage with ridging (CK), no-tillage with straw mulching for one year (T1), continuous no-tillage with straw mulching for three years (T2), and continuous no-tillage with straw mulching for seven years (T3). The effects of each treatment on soil aggregate distribution characteristics, organic carbon accumulation, and maize yield across different soil layers were analyzed. The results showed that in the 0-30 cm soil layer, compared with the other treatments, the T3 treatment significantly reduced soil bulk density and significantly increased soil moisture content. Meanwhile, the T3 treatment enhanced the percentage of >0.25 mm water-stable aggregates, the organic carbon content, and the contribution rate within these aggregates, while also increasing the mean weight diameter and geometric mean diameter. No-tillage with straw mulching significantly increased maize yield, with the increase ranging from 14.98% to 39.54% compared with the CK treatment. In summary, no-tillage combined with straw mulching helps improve soil aggregate stability, the organic carbon content of aggregates across all size classes, and maize yield in semi-arid areas, with the T3 treatment yielding the best results.

Key words: Maize, No-tillage with straw mulching, Soil aggregate, Organic carbon, Mean weight diameter, Geometric mean diameter, Yield

表1

不同年限免耕秸秆覆盖还田下土壤容重和含水量的变化

土层深度
Soil depth
(cm)
处理
Treatment
容重
Bulk density
(g/cm3)
含水量
Moisture
content (%)
0~10 CK 1.33±0.10a 12.01±0.27d
T1 1.32±0.03a 14.54±0.10c
T2 1.25±0.02b 17.19±1.01b
T3 1.10±0.02c 24.16±0.46a
10~20 CK 1.45±0.02a 8.56±0.35c
T1 1.50±0.02a 11.98±0.28b
T2 1.42±0.04a 13.85±0.07b
T3 1.26±0.01b 17.62±1.21a
20~30 CK 1.53±0.01a 6.48±0.31c
T1 1.52±0.01a 10.14±0.40b
T2 1.44±0.04b 12.44±0.65a
T3 1.38±0.01b 13.70±0.12a

图1

不同年限免耕秸秆覆盖还田下各粒级土壤团聚体含量分布的变化 不同小写字母表示差异显著(P < 0.05),下同。

表2

不同年限免耕秸秆覆盖还田下各粒径团聚体中有机碳含量的变化

土层深度
Soil depth (cm)
处理
Treatment
粒径Particle size (mm)
>5.00 (2.00,5.00] (1.00,2.00] (0.50,1.00] (0.25,0.50] ≤0.25
0~10 CK 15.38±0.51b 14.27±0.32c 14.10±0.39b 11.86±0.50b 9.89±0.26c 9.57±0.43c
T1 16.59±0.48b 15.98±0.69b 15.07±0.26b 15.30±1.07a 14.54±0.31b 13.14±0.50b
T2 18.27±0.61a 16.80±0.31b 15.23±0.56b 15.21±0.31a 14.63±0.24b 13.64±0.52b
T3 19.16±0.34a 18.59±0.55a 16.77±0.29a 16.34±0.53a 16.00±0.60a 15.37±0.48a
10~20 CK 12.63±0.46b 12.30±0.26b 10.84±0.50c 9.86±0.36c 9.75±0.32b 9.67±0.31b
T1 13.14±0.31b 12.48±0.35b 12.47±0.12b 11.57±0.27b 10.94±0.18a 10.55±0.61ab
T2 13.23±0.46b 13.22±0.35b 12.90±0.38b 11.84±0.46b 11.68±0.26a 11.26±0.52ab
T3 16.05±0.48a 15.79±0.57a 14.28±0.43a 13.59±0.50a 11.74±0.52a 11.54±0.43a
20~30 CK 10.71±0.51c 10.67±0.47b 10.36±0.45b 9.40±0.27b 9.38±0.31a 9.03±0.35b
T1 11.18±0.35bc 11.21±0.51b 11.10±0.70b 10.38±0.41b 9.51±0.43a 9.78±0.16ab
T2 12.11±0.21b 11.39±0.47b 11.15±0.71b 11.21±0.92b 10.63±0.54a 10.04±0.23ab
T3 15.02±0.42a 14.46±0.39a 13.90±0.35ab 13.16±0.47a 10.99±0.68a 10.51±0.48a

表3

不同年限免耕秸秆覆盖还田下各粒级土壤团聚体的有机碳贡献率

土层深度
Soil depth (cm)
处理
Treatment
粒径Particle size (mm)
>5.00 (2.00,5.00] (1.00,2.00] (0.50,1.00] (0.25,0.50] ≤0.25
0~10 CK 16.88±1.99b 11.16±0.45a 11.92±1.08a 15.52±0.89a 14.70±0.30b 29.03±1.84a
T1 18.24±1.58ab 10.22±1.68a 9.98±1.59a 16.29±1.56a 17.92±0.95a 27.46±1.85ab
T2 21.85±0.68a 10.37±0.93a 9.80±1.39a 16.11±0.42a 17.55±0.81a 23.68±0.77b
T3 22.25±0.69a 10.94±0.57a 9.94±0.72a 15.92±0.33a 17.81±0.80a 22.81±0.92b
10~20 CK 13.60±0.86c 9.17±1.29a 9.46±1.04a 13.60±1.41a 14.48±1.13a 38.32±2.74a
T1 17.12±1.35bc 9.13±0.63a 10.09±0.73a 14.95±0.76a 15.14±0.26a 34.22±2.35ab
T2 18.54±0.57ab 9.67±0.77a 9.97±0.33a 15.13±0.81a 16.23±1.03a 30.61±1.78bc
T3 21.67±1.65a 10.56±1.43a 10.07±0.75a 15.87±1.30a 15.34±0.88a 26.58±1.39c
20~30 CK 14.08±2.02c 8.45±0.23b 8.94±0.81a 14.60±1.04a 15.74±0.44a 37.89±2.60a
T1 16.69±1.49bc 8.90±0.64b 9.24±0.70a 15.96±0.45a 15.98±0.47a 33.39±2.25ab
T2 19.03±0.55ab 8.73±0.11b 8.87±0.75a 16.33±0.62a 17.26±1.77a 28.82±0.30bc
T3 22.98±0.79a 10.57±0.61a 10.32±0.71a 17.39±1.22a 16.41±1.14a 25.97±1.61c

图2

不同年限免耕秸秆覆盖还田下土壤MWD和GMD的变化

图3

土壤有机碳含量与MWD和GMD的相关性 “**”表示在P < 0.01水平极显著相关。

表4

不同年限免耕秸秆覆盖还田下玉米产量及其构成因素

处理
Treatment
穗长
Ear length (cm)
穗行数
Kernel row number
行粒数
Grains per row
百粒重
100-grain weight (g)
含水量
Moisture content (%)
产量
Yield (kg/hm2)
CK 18.35±0.24d 14.00±1.15a 31.00±1.52b 32.57±0.09a 29.80±0.18ab 10 183.45±292.62c
T1 19.41±0.34c 14.00±0.67a 36.00±2.00a 33.15±0.14a 30.27±0.29b 10 894.41±393.46bc
T2 20.41±0.22b 16.00±1.15a 34.00±1.52ab 33.39±0.04a 27.97±0.76a 11 921.39±536.32ab
T3 21.96±0.38a 16.00±1.15a 37.00±2.00a 33.44±0.19a 29.27±0.69ab 12 993.62±328.17a

图4

土壤有机碳含量与玉米产量相关性 “*”表示在P < 0.05水平显著相关。

[1] 李胜龙, 李和平, 林艺, 等. 东北地区不同耕作方式农田土壤风蚀特征. 水土保持学报, 2019, 33(4):110-118,220.
[2] Zhu G Y, Shangguan Z P, Deng L. Variations in soil aggregate stability due to land use changes from agricultural land on the Loess Plateau, China. Catena, 2021,200:105181.
[3] 付鑫, 王俊, 刘全全, 等. 不同覆盖材料及旱作方式土壤团聚体和有机碳含量的变化. 植物营养与肥料学报, 2015, 21(6):1423-1430.
[4] 薛斌, 黄丽, 鲁剑巍, 等. 连续秸秆还田和免耕对土壤团聚体及有机碳的影响. 水土保持学报, 2018, 32(1):182-189.
[5] Paul B K, Vanlauwe B, Ayuke F, et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agriculture,Ecosystems and Environment, 2013,164:14-22.
[6] González-Rosado M, Parras-Alcántara L, Aguilera-Huertas J, et al. Effects of land management change on soil aggregates and organic carbon in Mediterranean olive groves. Catena, 2020,195:104840.
[7] 李柏桥, 付玉, 李光录, 等. 退耕年限与方式对土壤团聚体稳定性及有机碳分布的影响. 干旱地区农业研究, 2017, 35(3):238-244.
[8] Assi A T, Blake J, Mohtar R H, et al. Soil Aggregates structure- based approach for quantifying the field capacity, permanent wilting point and available water capacity. Irrigation Science, 2019, 37(4):511-522.
doi: 10.1007/s00271-019-00630-w
[9] 王永栋, 武均, 蔡立群, 等. 秸秆还田量对陇中旱作麦田土壤团聚体稳定性和有机碳含量的影响. 干旱地区农业研究, 2022, 40(2):232-239,249.
[10] 周明星, 代子俊, 樊军, 等. 免耕结合覆盖措施对渭北旱塬黑垆土结构与团聚体有机碳含量的影响. 中国农业科学, 2023, 56(12):2329-2340.
doi: 10.3864/j.issn.0578-1752.2023.12.008
[11] Du Z L, Ren T, Hu C S, et al. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China Plain. Journal of Integrative Agriculture, 2013, 12 (11):2114-2123.
doi: 10.1016/S2095-3119(13)60428-1
[12] Hati K M, Chaudhary R S, Mandal K G, et al. Effects of tillage, residue and fertilizer nitrogen on crop yields, and soil physical properties under soybean-wheat rotation in Vertisols of Central India. Agricultural Research, 2015, 4(1):48-56.
doi: 10.1007/s40003-014-0141-7
[13] Zhang Y J, Tan C J, Wang R, et al. Conservation tillage rotation enhanced soil structure and soil nutrients in long-term dryland agriculture. European Journal of Agronomy, 2021,131:126379.
[14] 李涵, 张鹏, 贾志宽, 等. 渭北旱塬区秸秆覆盖还田对土壤团聚体特征的影响. 干旱地区农业研究, 2012, 30(2):27-33.
[15] 蔡太义, 黄耀威, 黄会娟, 等. 不同年限免耕秸秆覆盖对土壤活性有机碳和碳库管理指数的影响. 生态学杂志, 2011, 30 (9):1962-1968.
[16] Wang H X, Sun H X, Han Q F, et al. Effects of straw mulching on the soil aggregates in dryland wheat field under no-tillage. The Journal of Applied Ecology, 2012, 23(4):1025-1030.
[17] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50(3):627.
doi: 10.2136/sssaj1986.03615995005000030017x
[18] 张鹏, 周泉, 黄国勤. 冬季不同种植模式对稻田土壤团聚体及其有机碳的影响. 核农学报, 2019, 33(12):2430-2438.
doi: 10.11869/j.issn.100-8551.2019.12.2430
[19] 王兴, 祁剑英, 井震寰, 等. 长期保护性耕作对稻田土壤团聚体稳定性和碳氮含量的影响. 农业工程学报, 2019, 35(24):121-128.
[20] 马守义, 谢丽华, 朱广石. 黑土地保护性耕作技术的思考. 玉米科学, 2018, 26(1):116-119.
[21] 刘洋. 多年不同耕作措施及秸秆还田对土壤理化特性的影响. 呼和浩特:内蒙古农业大学, 2023.
[22] 马晓明, 李丹, 雷佳, 等. 不同降水年型下耕作方式结合覆盖对旱地土壤物理性质和马铃薯产量的影响. 应用生态学报, 2024, 35(2):447-456.
doi: 10.13287/j.1001-9332.202402.012
[23] 张兴义, 李健宇, 郭孟洁, 等. 连续14年黑土坡耕地秸秆覆盖免耕水土保持效应. 水土保持学报, 2022, 36(3):44-50.
[24] 郭孟洁, 李建业, 李健宇, 等. 实施16年保护性耕作下黑土土壤结构功能变化特征. 农业工程学报, 2021, 37(22):108-118.
[25] Wang Q J, Zhang J T, Gai Z J, et al. Effect of long-term straw mulching and no-tillage on physical properties of meadow soil in cold region. The Journal of Applied Ecology, 2018, 29(9):2943-2948.
[26] 张贵云, 吕贝贝, 张丽萍, 等. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响. 中国生态农业学报, 2019, 27(3):358-368.
[27] 郑洪兵, 罗洋, 隋鹏祥, 等. 秸秆还田对东北黑土水分特征及物理性质的影响. 干旱地区农业研究, 2024, 42(1):226-236.
[28] 谢世兴, 刘雪玲, 刘晨, 等. 寒旱区不同秸秆还田方式对土壤团聚体稳定性和有机碳组分含量的影响. 中国土壤与肥料, 2024(6):1-10.
[29] Zhu Y L, Wang D Y, Wang X J, et al. Aggregate-associated soil organic carbon dynamics as affected by erosion and deposition along contrasting hillslopes in the Chinese Corn Belt. Catena, 2021,199:105106.
[30] 闫雷, 董天浩, 喇乐鹏, 等. 免耕和秸秆还田对东北黑土区土壤团聚体组成及有机碳含量的影响. 农业工程学报, 2020, 36(22):181-188.
[31] 朱雪峰, 张春雨, 郝艳杰, 等. 玉米秸秆覆盖还田量对免耕土壤有机碳中红外光谱特征的影响. 应用生态学报, 2021, 32 (8):2685-2692.
doi: 10.13287/j.1001-9332.202108.022
[32] 张先凤, 朱安宁, 张佳宝, 等. 耕作管理对潮土团聚体形成及有机碳累积的长期效应. 中国农业科学, 2015, 48(23):4639-4648.
doi: 10.3864/j.issn.0578-1752.2015.23.005
[33] Zhou M, Yang X, Zhang X Y, et al. Fifteen years of conservation tillage increases soil aggregate stability by altering the contents and chemical composition of organic carbon fractions in Mollisols. Land Degradation & Development, 2022, 33(15):2932-2944.
doi: 10.1002/ldr.v33.15
[34] 高洪军, 彭畅, 张秀芝, 等. 不同秸秆还田模式对黑钙土团聚体特征的影响. 水土保持学报, 2019, 33(1):75-79.
[35] 胡宁, 娄翼来, 梁雷. 保护性耕作对土壤有机碳、氮储量的影响. 生态环境学报, 2010, 19(1):223-226.
doi: 10.16258/j.cnki.1674-5906(2010)01-0223-04
[36] 徐艺萍, 饶越悦, 孟艳, 等. 免耕对农田土壤团聚体的影响研究:Meta分析. 环境科学, 2024, 45(2):952-960.
[37] Cheng Y H, Wu L, Sun H J, et al. Effects of straw mulching and vetiver grass hedgerows on the size distribution of the soil water stable aggregates and aggregate-associated organic carbon in red soil. Acta Ecologica Sinica, 2016, 36(12):3518-3524.
[38] 李景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量. 中国农业科学, 2021, 54(2):334-344.
doi: 10.3864/j.issn.0578-1752.2021.02.009
[39] Wang Y L, Wu P N, Mei F J, et al. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. Journal of Environmental Management, 2021,288:112391.
[40] 梁尧, 蔡红光, 杨丽, 等. 玉米秸秆覆盖与深翻两种还田方式对黑土有机碳固持的影响. 农业工程学报, 2021, 37(1):133-140.
[41] 鲁悦, 鲍雪莲, 霍海南, 等. 免耕条件下不同量秸秆覆盖还田提高东北黑土区玉米光合性能和产量的效应. 植物营养与肥料学报, 2023, 29(5):840-847.
[42] 马永财, 滕达, 衣淑娟, 等. 秸秆覆盖还田及腐解率对土壤温湿度与玉米产量的影响. 农业机械学报, 2021, 52(10):90-99.
[1] 周文丽, 郝淼艺, 张仁和. 高密度种植下氮肥对玉米根系生长及氮代谢的影响[J]. 作物杂志, 2026, (1): 125–132
[2] 谢富欣, 江晓林, 李成焕, 张文菁, 王飞雪, 胡卫丽, 梅鸿献, 何革命, 刘焱. 芝麻叶菜采摘时期对主要经济产量性状的影响及综合效益分析[J]. 作物杂志, 2026, (1): 160–166
[3] 施锘, 朱宏强, 杨梦璇, 周艳宾, 代惠娟, 吕鹏辉, 刘波, 王圣丰, 穆文坡, 杜宇. 不同微生物菌肥对烤烟生长发育、产量及品质的影响[J]. 作物杂志, 2026, (1): 189–196
[4] 张乐, 韩云飞, 杜二小, 李保成, 伞薪潼, 刘新雨, 王艳莉, 赵沛义, 任永峰. 有机培肥措施对马铃薯光合特性、养分含量及产量的影响[J]. 作物杂志, 2026, (1): 197–207
[5] 徐浩, 魏全全, 谭洪伟, 芶久兰, 冉雪松, 张萌, 宋南伶, 柳玲玲, 顾小凤, 吕锡斌. 酒糟有机无机复混肥对酒用高粱产量、品质、养分吸收及利用的影响[J]. 作物杂志, 2026, (1): 208–216
[6] 叶晓娟, 刘强. 不同降水年型下春小麦产量对降水、施氮及秸秆覆盖的响应模拟[J]. 作物杂志, 2026, (1): 217–224
[7] 桑瑞娟, 董春阳, 张红妹, 何云, 孙浩, 刘伯帅, 朱晓艳, 马森, 李德锋. 不同生育期刈割对豫北小黑麦草产量、品质和青贮发酵质量的影响[J]. 作物杂志, 2026, (1): 225–230
[8] 杨文高, 袁文珏, 李兆光, 和桂青, 和琼姬, 王蕊, 李燕, 叶磊, 侯志江. 播期对滇西北冬播藜麦农艺性状和产量的影响[J]. 作物杂志, 2026, (1): 257–265
[9] 郑晓娟, 孙华, 郭宁, 刘树森, 张海剑, 马红霞, 石洁. 玉米病原菌对引起大豆根腐病的风险评估[J]. 作物杂志, 2026, (1): 266–270
[10] 王志, 周文丽, 赵耀, 刘正, 李从锋, 张仁和. 新型化控组合对玉米光合性能和产量提升的影响[J]. 作物杂志, 2025, (6): 112–120
[11] 李青欣, 金秀良, 宋晓, 张珂珂, 郭腾飞, 黄绍敏, 岳克, 丁世杰, 黄明, 李友军. 有机肥部分替代氮肥对豫东冬小麦生长及土壤特性的影响[J]. 作物杂志, 2025, (6): 121–131
[12] 高文瑞, 孙艳军, 韩冰, 张晓青, 王显生, 郑子松. 外源有机硒对设施樱桃番茄产量及果实品质的影响[J]. 作物杂志, 2025, (6): 140–147
[13] 兰秀, 梁振华, 杨海霞, 李恒锐, 阮丽霞, 韦婉羚, 陈会鲜, 何洪良, 黄若兰, 赵春慧, 汤丹峰. 甘蔗―凉粉草间作对土壤理化性质及作物产量的影响[J]. 作物杂志, 2025, (6): 156–163
[14] 秦娜娜, 黄淋华, 陈莹, 王胜谋, 谢勇, 缪凯, 李万明, 戚兰. 叶面喷施丙酰芸苔素内酯对夏大豆光合作用、农艺性状和产量的影响[J]. 作物杂志, 2025, (6): 164–171
[15] 王舒琦, 李建波, 刘志萍, 马宇, 渠佳慧, 巴图, 徐寿军. 不同栽培模式下大麦产量与蛋白质形成的生理机制研究[J]. 作物杂志, 2025, (6): 172–180
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!