作物杂志,2016, 第4期: 41–46 doi: 10.16035/j.issn.1001-7283.2016.04.007

• 遗传育种·种质资源·生物科技 • 上一篇    下一篇

水稻黄叶突变体ys94的鉴定与基因定位

明鸣,汪颖,林启冰,王益华,程治军   

  1. 中国农业科学院作物科学研究所,100081,北京
  • 收稿日期:2016-04-01 修回日期:2016-06-14 出版日期:2016-08-15 发布日期:2018-08-26
  • 通讯作者: 程治军
  • 作者简介:作者简介:明鸣,在读硕士,研究方向为生物化学与分子生物学
  • 基金资助:
    国家自然科学基金(91535302)

Identification and Gene Mapping of a Yellow-Leaf Rice Mutant ys94

Ming Ming,Wang Ying,Lin Qibing,Wang Yihua,Cheng Zhijun   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2016-04-01 Revised:2016-06-14 Online:2016-08-15 Published:2018-08-26
  • Contact: Zhijun Cheng

摘要:

水稻突变体ys94,是一个来源于化学诱变的叶色突变体。突变体在三叶期前出现明显的黄叶表型,叶绿素a、叶绿素b含量下降;透射电镜观察表明,突变体叶片叶绿体数量减少、类囊体片层退化。三叶期后叶色开始转绿。成熟期突变体ys94的分蘖数减少,但在结实率和株高等性状上与野生型相比并无明显差异。遗传分析表明,ys94的突变性状由一对隐性核基因控制。利用ys94×DJY组合的F2定位群体,将突变基因定位在第8染色体短臂标记M8-3和M8-24之间,两标记间的物理距离为140kb,此区间包含11个候选基因。本研究结果为候选基因的克隆和功能分析奠定了基础。

关键词: 水稻, 叶色突变体, 精细定位, 黄叶, ys94

Abstract:

Abstrate A yellow-leaf mutant ys94 was isolated by chemical mutagenesis. Compared with its wild type, ys94 mutant displayed yellow leaf phenotype and reduced contents of both chlorophyll a and chlorophyll b in the germination period. The results of electron microscopic observation revealed that there were significantly reduced number of chloroplast,chloroplast dysplasia and degenerated thylakoid lamella in the ys94 in compared to WT.The tiller number of the mutant was reduced,but the plant height,the number of spikelets per panicle and the seed setting had no significant difference with the wild type. Genetic analysis showed that the mutation of ys94 was controlled by one recessive nuclear gene. Map-based mapping of the mutant gene was conducted by using of the F2population from ys94×DJY. The mutant gene was finally mapped to a 140kb region between the maker M8-3 and M8-24 on the short arm of chromosome 8, in which there were 11 annotated genes. Our study results have set a foundation for future cloning and functional analysis of the gene.

Key words: Key words Rice, Leaf-colour mutant, Gene mapping, Yellow leaf, ys94

表1

野生型与突变体的农艺性状"

农艺性状Agronomic traits 野生型Wild type 突变体ys94 比对照增减Compared with WT(%)
株高Plant height(cm) 103.03±3.36 102.53±2.91 -0.49
分蘖数Tiller number(个) 9.89±1.69 8.91±1.42 -9.90*
结实率Seed-setting rate(%) 82.93±1.71 84.41±1.30 1.70
有效分蘖数Effective tiller number(个) 9.26±1.60 8.66±1.36 -6.50*
每穗粒数No. of spikelets per panicle(粒) 102.77±20.23 103.18±22.78 0.40
千粒重1000-kernel weight(g) 24.41±0.03 25.11±0.04 2.90

图1

野生型和ys94突变体光合色素含量比较不同字母表示在0.01水平上差异显著"

图2

野生型和ys94突变体苗期叶绿体发育情况的电镜观察 A:野生型植株叶片的叶绿体;B:突变体植株叶片的叶绿体;C:野生型植株叶片的类囊体片层;D:突变体植株叶片的类囊体片层"

图3

光合色素代谢途径和光系统相关基因在野生型和突变体ys94苗期的表达"

图4

ys94的精细定位 利用2216个F2突变体表型单株,将目标基因定位于分子标记M8-3和M8-24之间140kb的区间内"

图5

候选基因LOC_Os08g12840的结构及其在野生型和突变体中的基因序列及编码氨基酸序列分析"

[1] 李燕群, 高家旭, 肖云华 , 等. 水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位. 作物学报, 2014,40(4):644-649.
doi: 10.3724/SP.J.1006.2014.00644
[2] Yoo S C, Cho S H, Sugimoto H , et al. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. The Plant Physiology, 2009,150:388-401.
doi: 10.1104/pp.109.136648
[3] 邓晓娟, 张海清, 王悦 , 等. 水稻叶色突变基因研究进展. 杂交水稻, 2012,25(5):9-14.
[4] Jung K H, Hur J, Ryu C H , et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiology, 2003,44(5):463-472.
doi: 10.1093/pcp/pcg064
[5] Lee S, Kim J H, Yoo E S , et al. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology, 2005,57(6):805-818.
doi: 10.1007/s11103-005-2066-9
[6] Wang P, Gao J, Wan C , et al. Divinyl chlorophyll( ide) a can be converted to monovinyl chlorophyll( ide) a by a divinyl reductase in rice. Plant Physiology, 2010,153(3):994-1003.
doi: 10.1104/pp.110.158477
[7] Zhang H, Li J, Yoo J H , et al. Rice chlororina-1 and chlorine-9 encode chlD and Chll subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 2006,62(3):325-337.
doi: 10.1007/s11103-006-9024-z
[8] Dong H, Fei G L, Wu C Y , et al. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiology, 2013,162(4):1867-1880.
doi: 10.1104/pp.113.217604
[9] Zhao C, Xu J, Chen Y , et al. Molecular cloning and characterization of OsCHR4,a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012,236(4):1165-1176.
doi: 10.1007/s00425-012-1667-1
[10] Zhou K, Ren Y, Lü J , et al. Young leaf chlorosis 1,a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta, 2013,237(1):279-292.
doi: 10.1007/s00425-012-1756-1
[11] Larkin R M, Alonso J M, Ecker J R , et al. GUN4,a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003,299:902-906.
doi: 10.1126/science.1079978
[12] 董凤高, 朱旭东, 熊振民 , 等. 以淡绿色为标记的籼稻光-温敏核不育系M2S的选育. 中国水稻科学, 1995,9(2):65-70.
[13] Arnon D I . Copper enzymes in isolated chloroplasts:polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949,24:1-15.
doi: 10.1104/pp.24.1.1
[14] Holtorf H, Apel K . Transcripts of the two NADPH protochlorophyllide oxideredductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. Plant Molecular Biology, 1996,31:387-392.
doi: 10.1007/BF00021799
[15] Wu Z, Zhang X, He B , et al. A chlorophyll deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesisi. Plant Physiology, 2007,145:29-40.
doi: 10.1104/pp.107.100321
[16] Reinbothe S, Reinbothe C, Lebedev N , et al. PORA and PORB,two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. Plant Cell, 1996,8(5):763-769.
doi: 10.1105/tpc.8.5.763
[17] Xiao W Y, Jen S . The role of hexokinase in plant sugar signal transduction and growth and development. Plant Molecular Biology, 2000,44(4):451-461.
doi: 10.1023/A:1026501430422
[18] Klein R R, Mason H S, Mullet J E . Light-regulated translation of chloroplast proteins.I.Transcripts of psaA-psaB,psbA,and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. The Journal of Cell Biology, 1988,2:289-301.
[19] Ha S B, An G . Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis haliana cab1 gene. Proceedings of the National Academy of Sciences of the USA, 1988,85:8017-8021.
doi: 10.1073/pnas.85.21.8017
[20] Yang X, Gong P, Li k, et al. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice . Experimental Biology of Oxford University, 2016,19(5):109.
[21] Walter B, Hristou A, Nowaczyk M M , et al. In vitro reconstitution of co-translational D1 insertion reveals a role of the cpSec-Alb3 translocase and Vipp1 in photosystem II biogenesis. Biochemical Journal, 2015,468(2):315-324.
doi: 10.1042/BJ20141425
[22] Kuroda H, Suzuki H, Kusumegi T , et al. Translation of psbC mRNAs starts from the downstream GUG,not the upstream AUG,and requires the extended Shine-Dalgarno sequence in tobacco chloroplasts. Plant Cell Physiology, 2007,48(9):1374-1378.
doi: 10.1093/pcp/pcm097
[23] Stoppel R, Meurer J . Complex RNA metabolism in the chloroplast:an update on the psbB operon. Planta, 2013,237(2):441-449.
doi: 10.1007/s00425-012-1782-z
[24] 何冰, 刘玲珑, 张文伟 , 等. 植物叶色突变体. 植物生理学通讯, 2006,42(1):1-9.
[25] 王平荣, 张帆涛, 高家旭 , 等. 高等植物叶绿素生物合成的概述. 西北植物学报, 2009,29(3):629-636.
[26] 李广贤, 姚方印, 侯恒军 , 等. 水稻黄绿叶突变体ygl209的遗传分析与目标基因精细定位. 作物学报, 2015,41(10):1603-1611.
doi: 10.3724/SP.J.1006.2015.01603
[27] 王丹霞, 权瑞党, 黄荣峰 . 水稻yl1黄叶突变体的基因克隆与功能分析. 中国农业科技导报, 2015,17(2):41-48.
[28] Heath R J, Rock C O . Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. Journal Biology Chemistry, 1996,271(44):27795-27801.
doi: 10.1074/jbc.271.44.27795
[1] 姬生栋 栗 鹏 李江伟 宋刘敏 刘苗苗 高狂龙 尹海庆. 水稻株系与亲本间灌浆期POD 酶谱及遗传效应分析[J]. 作物杂志, 2018, (5): 17–20
[2] 马孟莉 郑 云 周晓梅 张婷婷 张晓倩 卢丙越. 云南哈尼梯田红米地方品种遗传多样性分析[J]. 作物杂志, 2018, (5): 21–26
[3] 陈瑛瑛 王徐艺凌 朱宇涵 武 威 刘 涛 孙成明. 水稻穗部氮素含量高光谱估测研究[J]. 作物杂志, 2018, (5): 116–120
[4] 隋阳辉, 高继平 刘彩虹, 徐正进 王延波 赵海岩. 东北冷凉地区秸秆还田方式对水稻#br# 光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137–143
[5] 梁晓宇, 林春雨, 马淑梅, 王洋. 水稻耐盐碱胁迫优异等位变异的发掘[J]. 作物杂志, 2018, (4): 48–52
[6] 章星传, 黄文轩, 朱宽宇, 王志琴, 杨建昌. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响[J]. 作物杂志, 2018, (4): 69–78
[7] 曾波. 近30年来我国水稻主要品种更新换代历程浅析[J]. 作物杂志, 2018, (3): 1–7
[8] 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 68–76
[9] 唐志强,董立强,李睿,张丽颖,何娜,李跃东. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响[J]. 作物杂志, 2018, (3): 141–147
[10] 赫臣,郑桂萍,赵海成,陈立强,李红宇,吕艳东,宋江. 增施腐殖酸及减量施肥对盐碱地水稻穗部性状与产量的影响[J]. 作物杂志, 2018, (3): 129–134
[11] 崔勇. 稻田水旱轮作的研究进展[J]. 作物杂志, 2018, (3): 8–14
[12] 曾波,孙世贤,王洁. 我国水稻主要品种近30年来审定及推广应用概况[J]. 作物杂志, 2018, (2): 1–5
[13] 曲歌,陈争光,王雪. 基于近红外光谱与SIMCA和PLS-DA的水稻品种鉴别[J]. 作物杂志, 2018, (2): 166–170
[14] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
[15] 赵璐,杨治伟,部丽群,田玲,苏梅,田蕾,张银霞,杨淑琴,李培富. 宁夏和新疆水稻种质资源表型遗传多样性分析及综合评价[J]. 作物杂志, 2018, (1): 25–34
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .