作物杂志,2019, 第6期: 1–7 doi: 10.16035/j.issn.1001-7283.2019.06.001

• 专题综述 •    下一篇

马铃薯连作障碍研究进展

侯乾,王万兴,李广存,熊兴耀   

  1. 中国农业科学院蔬菜花卉研究所/农业农村部薯类作物生物学与遗传育种重点实验室,100081,北京
  • 收稿日期:2019-05-05 修回日期:2019-07-05 出版日期:2019-12-15 发布日期:2019-12-11
  • 通讯作者: 熊兴耀
  • 作者简介:侯乾,在读硕士研究生,主要从事马铃薯根际微生物方面研究
  • 基金资助:
    现代农业产业技术体系建设专项资金(CARS-09-P11);国家重点研发计划项目(2018YFD0200804);中国农业科学院科技创新工程项目(CAAS-ASTIP-IVFCAAS)

Advances in the Research on Potato Continuous Cropping Obstacles

Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Root and Tuber Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2019-05-05 Revised:2019-07-05 Online:2019-12-15 Published:2019-12-11
  • Contact: Xingyao Xiong

摘要:

马铃薯是世界上四大粮食作物之一。在中国由于马铃薯大面积连年种植,造成连作障碍,导致块茎产量和品质下降等问题。连作障碍是土壤与作物相互作用的结果。本文综述了引起马铃薯连作障碍的主要原因,以及防治马铃薯连作障碍的主要方法。主要从连作马铃薯土壤理化性质劣变、化感自毒作用、土壤微生物群落结构变化等方面介绍了马铃薯连作障碍机制的研究进展;并从合理轮作、间套作,施用生物有机肥等农艺措施,化学熏蒸、物理消毒等土壤消毒措施方面介绍了马铃薯连作障碍防控的研究进展,旨在为研究马铃薯连作障碍机理和建立克服连作障碍的技术奠定基础。

关键词: 马铃薯, 连作障碍, 土壤理化性质, 根际微生物

Abstract:

Potato is one of the four major food crops in the world. In China, due to the large-scale successive planting, the continuous cropping obstacles on potatoes are serious which lead to a series of problems such as yield and quality reduction. Continuous cropping obstacle is the result of interaction between soil and crops. This paper reviews the main causes of potato continuous cropping obstacles and the main methods to control potato continous cropping obstacles. The research progress of potato continuous cropping mechanism is introduced from the aspects of contiuous physical and chemical deterioration of potato soil, allelopathic self-toxicity and soil microbial community structure change. The prevention and control of potato continuous cropping soil, allelopathy and autotoxicity rhizosphere, microorganisms change and methods to overcome potato continuous cropping obstacles were also introduced. This paper aims at laying the foundation for studying the mechanism and establishing technology to overcome the continuous cropping obstacles.

Key words: Potato, Continuous cropping obstacle, Soil physical and chemical properties, Rhizosphere microorganism

图1

马铃薯连作障碍关系图"

[1] Qin S, Yeboah S, Xu X X , et al. Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements. Frontiers in Microbiology, 2017,8:845.
doi: 10.3389/fmicb.2017.00845 pmid: 28539923
[2] Ma K, Zhang L, Du Q , et al. Effect of potato continuous cropping on soil microorganism community structure and function. Soil Water Conserve, 2010,24(4):229-233.
[3] Liu X, Qiu H Z, Zhang W M , et al. Sink-source relationship of potato plants and its role involved in the reduction of tuber yield in continuous cropping system. Chinese Journal of Applied Ecology, 2017,28(5):1571-1582.
doi: 10.13287/j.1001-9332.201705.019 pmid: 29745194
[4] Liu W X, Wang Q L, Wang B Z , et al. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant and Soil, 2015,395(1/2):415-427.
doi: 10.1007/s11104-015-2569-3
[5] Jouquet P, Chintakunta S, Bottinelli N , et al. The influence of fungus-growing termites on soil macro and micro-aggregates stability varies with soil type. Applied Soil Ecology, 2016,101:117-123.
doi: 10.1016/j.apsoil.2016.02.001
[6] Kong F L, Chen F, Zhang H L , et al. Effects of rotational tillage on soil physical properties and winter wheat yield. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(8):150-155.
[7] 胡宇, 郭天文, 张绪成 . 旱地马铃薯连作对土壤养分的影响. 安徽农业科学, 2009,37(12):5436-5439.
[8] 孙权, 陈茹 . 宁南黄土丘陵区马铃薯连作土壤养分、酶活性和微生物区系的演变. 水土保持学报, 2010,24(6):208-212.
[9] Acosta-Martínez V, Zobeck T M, Allen V . Soil microbial,chemical and physical properties in continuous cotton and integrated crop-livestock systems. Soil Science Society of America Journal, 2004,68(6):1875-1884.
doi: 10.2136/sssaj2004.1875
[10] Li T Z, Liu T T, Zheng C Y , et al. Changes in soil bacterial community structure as a result of incorporation of brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses. PLoS ONE, 2017,12(3):e0173923.
doi: 10.1371/journal.pone.0173923 pmid: 28346463
[11] Acosta-Martinez V, Burow G, Zobeck T M , et al. Soil microbial communities and function in alternative systems to continuous cotton. Soil Science Society of America Journal, 2010,74(4):1181-1192.
doi: 10.2136/sssaj2008.0065
[12] 刘来, 孙锦, 邦世荣 . 大棚辣椒连作土壤养分和离子变化与酸化的关系. 中国农学通报, 2013,29(16):100-105.
[13] 贡璐, 冉启洋, 韩丽 . 塔里木河上游典型绿洲连作棉田土壤酶活性与其理化性质的相关性分析. 水土保持通报, 2012,3(4):36-42.
[14] 马海燕, 徐瑾, 郑成淑 , 等. 非洲菊连作对土壤理化性状与生物性状的影响. 中国农业科学, 2011,44(18):3733-3740.
doi: 10.3864/j.issn.0578-1752.2011.18.004
[15] Zhou X G, Wu F Z . Dynamics of the diversity of fungal and fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiology Ecology, 2012,80(2):469-478.
doi: 10.1111/j.1574-6941.2012.01312.x
[16] Maltais-Landry G . Legumes have a greater effect on rhizosphere properties (pH,organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant and Soil, 2015,394(1/2):139-154.
doi: 10.1007/s11104-015-2518-1
[17] Qiu Y, Wang Y J, Xie Z K , et al. Temporal effects of gravel-sand mulching on soil microbial populations and soil enzyme activity in croplands with continuous cultivation. Bulletin of Soil and Water Conservation, 2011,31(5):65-68.
[18] Rasool N, Reshi Z A, Shah M A . Effect of butachlor (G) on soil enzyme activity. European Journal of Soil Biology, 2014,61:94-100.
doi: 10.1016/j.ejsobi.2014.02.002
[19] Trasar-Cepeda C, Leirós M C, Seoane S , et al. Biochemical properties of soils under crop rotation. Applied Soil Ecology, 2008,39(2):133-143.
doi: 10.1371/journal.pone.0223026 pmid: 31568535
[20] Gonnety J T, Assémien E F L, Guéi A M ,et al. Effect of land-use types on soil enzymatic activities and chemical properties in semi-deciduous forest areas of Central-West Côte d’Ivoire. Biotechnology. Agronomy, Society and Environment, 2012,16(4):478-485.
[21] Wang H W, Wang X X, Lü L X , et al. Effects of applying endophytic fungi on the soil biological characteristics and enzyme activities under continuously cropped peanut. The Journal of Applied Ecology, 2012,23(10):2693-2700.
pmid: 23359928
[22] Grün A L, Straskraba S, Schulz S , et al. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass,enzyme activity,and functional genes involved in the nitrogen cycle of loamy soil. Journal of Environmental Sciences, 2018,69:12-22.
doi: 10.1016/j.jes.2018.04.013 pmid: 29941247
[23] 胡元森, 吴坤, 李翠香 . 酚酸物质对黄瓜幼苗及枯萎病菌菌丝生长的影响. 生态学报, 2007,26(11):1738-1742.
[24] 张婷玉, 林多, 杨延杰 . 辣椒根系分泌物的收集方法研究. 北方园艺,2014(12):14-17.
[25] 尹琪淋, 谢越 . 酚酸类物质导致植物连作障碍的研究进展. 安徽农业科学, 2011,39(34):20977-20978,20985.
[26] Louws F J, Rivard C L, Kubota C . Grafting fruiting vegetables to manage soilborne pathogens,foliar pathogens,arthropods and weeds. Scientia Horticulturae, 2010,127(2):127-146.
doi: 10.1016/j.scienta.2010.09.023
[27] Wang C M, Li T C, Jan Y L , et al. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of rhododendron formosanum. PLoS ONE, 2013,8(12):e85162.
doi: 10.1371/journal.pone.0085162 pmid: 24391991
[28] 沈宝云, 李朝周, 余斌 , 等. 甘肃沿黄灌区连作马铃薯根区土壤有机物GC-MS分析. 干旱地区农业研究, 2016,34(3):1-7.
[29] 杨桂丽, 马琨, 卢斐 , 等. 马铃薯连作栽培对土壤化感物质及微生物群落的影响. 生态与农村环境学报, 2015,31(5):711-717.
[30] 张文明, 邱慧珍, 刘星 , 等. 连作对马铃薯根系形态及吸收能力的影响. 干旱地区农业研究, 2014,32(1):34-37,46.
[31] Arafat Y, Wei X Y, Jiang Y H , et al. Spatial distribution patterns of root-associated bacterial communities mediated by root exudates in different aged ratooning tea monoculture systems. International Journal of Molecular Sciences, 2017,18(8):1727.
doi: 10.3390/ijms18081727 pmid: 28786955
[32] He J Z, Zheng Y, Chen C R , et al. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments, 2008,8(5):349-358.
doi: 10.1007/s11368-008-0025-1
[33] Berendsen R L, Pieterse M J, Bakker P A H M . The rhizosphere microbiome and plant health. Trends in Plant Science, 2012,17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001
[34] Prashar P, Kapoor N, Sachdeva S . Biocontrol of plant pathogens using plant growth promoting bacteria. Sustainable Agriculture Reviews, 2013,12:319-360.
doi: 10.1094/PHYTO-10-19-0383-R pmid: 31799901
[35] Hu H Q, Li X S, Hong H . Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of capsicum bacterial wilt. Biological Control, 2010,54(3):359-365.
doi: 10.1016/j.biocontrol.2010.06.015
[36] Glaring M A, Vester J K, Lylloff J E , et al. Microbial diversity in a permanently cold and alkaline environment in greenland. PLoS ONE, 2015,10(4):e0124863.
doi: 10.1371/journal.pone.0124863 pmid: 25915866
[37] Atkinson D, Thornton M K, Miller J S . Development of Rhizoctonia solani on stems,stolons and tubers of potatoes Ⅰ. Effect of inoculum source. American Journal of Potato Research, 2010,87(4):374-381.
doi: 10.1007/s12230-010-9143-6
[38] 谭雪莲, 郭天文, 刘高远 . 马铃薯连作土壤微生物特性与土传病原菌的相互关系. 灌溉排水学报, 2016,35(8):30-35.
[39] Mendes R, Garbeva P, Raaijmakers J M . The rhizosphere microbiome:significance of plant beneficial,plant pathogenic,and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013,37(5):634-663.
doi: 10.1111/1574-6976.12028
[40] Qin S, Yeboah S, Cao L , et al. Breaking continuous potato cropping with legumes improves soil microbial communities,enzyme activities and tuber yield. PLoS ONE, 2017,12(5):e0175934.
doi: 10.1371/journal.pone.0175934 pmid: 28463981
[41] Tan Y, Cui Y, Li H , et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiological Research, 2017,194:10-19.
doi: 10.1016/j.micres.2016.09.009 pmid: 27938858
[42] Li Y C, Li Z, Li Z W , et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L. ) continuous cropping soil by high-throughput pyrosequencing approach. Journal of Applied Microbiology, 2016,121(3):787-799.
doi: 10.1111/jam.13225 pmid: 27377624
[43] Franche C, Lindström K, Elmerich C . Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 2009,321(1):35-59.
doi: 10.1264/jsme2.ME19030 pmid: 31611488
[44] Xiong W, Zhao Q Y, Zhao J , et al. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology, 2015,70(1):209-218.
doi: 10.1007/s00248-014-0516-0 pmid: 25391237
[45] İnceoğlu Ö, Al-Soud W A, Salles J F ,et al. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE, 2011,6(8):e23321.
doi: 10.1371/journal.pone.0023321 pmid: 21886785
[46] Yousuf B, Keshri J, Mishra A , et al. Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene, 2012,506(1):18-24.
doi: 10.1016/j.gene.2012.06.083
[47] Shen Z, Zhong S, Wang Y , et al. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. European Journal of Soil Biology, 2013,57(4):1-8.
doi: 10.1016/j.ejsobi.2013.03.006
[48] Edwards J, Johnson C, Santos-Medellín C , et al. Structure,variation,and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(8):E911-E920.
[49] Klironomos J N . Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 2002,417(6884):67-70.
doi: 10.1038/417067a pmid: 11986666
[50] Harrison K. A, Bardgett R D . Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology, 2010,98(2), 384-395.
doi: 10.1111/jec.2010.98.issue-2
[51] Neupane S, Goyer C, Zebarth B J , et al. Soil bacterial communities exhibit systematic spatial variation with landform across a commercial potato field. Geoderma, 2019,335:112-122.
doi: 10.1016/j.geoderma.2018.08.016
[52] Yu L H, Wu S J, Peng Y S , et al. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnology Journal, 2016,14(1):72-84.
doi: 10.1111/pbi.12358 pmid: 25879154
[53] Shen Z, Ruan Y, Chao X , et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biology and Fertility of Soils, 2015,51(5):553-562.
doi: 10.1007/s00374-015-1002-7
[54] Liu X, Zhang S, Jiang Q , et al. Using community analysis to explore bacterial indica-tors for disease suppression of tobacco bacterial wilt. Scientific Reports, 2016,6:36773.
doi: 10.1038/srep36773 pmid: 27857159
[55] Zhao S, Liu D, Ling N , et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon fusarium wilt rhizosphere soil. Biology and Fertility of Soils, 2014,50(5):765-774.
doi: 10.1007/s00374-014-0898-7
[56] Qiu M H, Zhang R F, Xue C , et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biology and Fertility of Soils, 2012,48(7), 807-816.
doi: 10.1007/s00374-012-0675-4
[57] Bending G D, Turner M K, Rayns F , et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology and Biochemistry, 2004,36(11):1785-1792.
doi: 10.1016/j.soilbio.2004.04.035
[58] Moulin A P, Buckley K E, Volkmar K . Soil quality as affected by amendments in bean-potato rotations. Canadian Journal of Soil Science, 2011,91(4):533-542.
doi: 10.4141/CJSS10011
[59] 秦舒浩, 曹莉, 张俊莲 , 等. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响. 作物学报, 2014,40(8):1452-1458.
doi: 10.3724/SP.J.1006.2014.01452
[60] 王丽红, 郭晓冬, 谭雪莲 . 不同轮作方式对马铃薯土壤酶活性及微生物数量的影响. 干旱地区农业研究, 2016,34(5):109-113.
[61] 徐雪风, 李朝周, 张俊莲 . 轮作油葵对马铃薯生长发育及抗性生理指标的影响. 土壤, 2017,49(1):83-89.
[62] Li S, Wu F . Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology, 2018,9:1521.
doi: 10.3389/fmicb.2018.01521 pmid: 30034385
[63] 李越, 曹瑾, 汪春明 . 蚕豆间作栽培对连作马铃薯根际土壤微生物的影响. 农业科学研究, 2017,38(2):8-13.
[64] 王娜, 陆姗姗, 马琨 , 等. 宁夏南部山区马铃薯不同间作模式对根际土壤细菌多样性的影响. 干旱区资源与环境, 2016,30(12):193-198.
[65] 何进勤, 冯付军, 吴晓彦 . 间套作模式对宁南山区马铃薯农艺性状的影响. 宁夏农林科技, 2015,56(3):1-3,7.
[66] González-Chávez M C A, Aitkenhead-Peterson J A, Gentry T J , et al. Soil microbial community,C,N,and P responses to long term tillage and crop rotation. Soil and Tillage Research, 2010,106(2), 285-293.
doi: 10.1016/j.still.2009.11.008
[67] Ling N, Zhang W, Tan S , et al. Effect of the nursery application of bioorganic fertilizer on spatial distribution of Fusarium oxysporum f. sp. niveum and its antagonistic bacterium in the rhizosphere of watermelon. Applied Soil Ecology, 2012,59(4):13-19.
doi: 10.1016/j.apsoil.2012.05.001
[68] 宋尚成, 朱凤霞, 刘润进 . 秸秆生物反应堆对西瓜连作土壤微生物数量和土壤酶活性的影响. 微生物学通报, 2010,37(5):696-700.
[69] 赵丽婷, 刘玉环, 秦超 , 等. 酵母生物肥对土壤理化性质和马铃薯经济效益的影响. 蔬菜,2015(10):34-38.
[70] 沈宝云, 余斌, 王文 , 等. 腐植酸铵、有机肥、微生物肥配施在克服甘肃干旱地区马铃薯连作障碍上的应用研究. 中国土壤与肥料,2011(2):68-70.
[71] 罗飞, 赵汉雨, 刘存祥 , 等. 几种常见土壤杀菌方法述评. 安徽农学通报, 2010, 16(9): 50, 120.
[72] 杨桂丽, 童娟, 张丽 . 熏蒸灭菌对连作马铃薯生长发育及土壤微生物的影响. 农业科学研究, 2012,33(1):36-40,56.
[73] 郭成瑾, 张丽荣, 沈瑞清 . 土壤消毒对马铃薯连作田土壤微生物数量的影响. 江苏农业科学, 2014,42(14):368-370.
[1] 陈杨,秦永林,于静,贾立国,樊明寿. 内蒙古灌溉马铃薯氮肥减施依据及措施[J]. 作物杂志, 2019, (6): 90–93
[2] 郭津廷,滕跃,高玉亮,张雁,李葵花. 不同光质对马铃薯腋芽薯结薯特性及光合性能的影响[J]. 作物杂志, 2019, (6): 120–126
[3] 张聪颖,蒋继志,梁娇,乔柳,黄杰. 细菌HT-6的鉴定及其对马铃薯致病疫霉抑制稳定性的研究[J]. 作物杂志, 2019, (6): 162–167
[4] 祝菊澧,梁静思,张佩,王伟伟,林桐司骐,谢欣娱,苏瑞,唐唯. 基于qPCR和LAMP技术的马铃薯晚疫病菌快速检测方法[J]. 作物杂志, 2019, (6): 168–176
[5] 任永峰,路战远,赵沛义,高宇,刘广华,栗艳芳. 不同种植方式对旱地马铃薯水分利用及的影响[J]. 作物杂志, 2019, (5): 120–124
[6] 齐德强,赵晶晶,冯乃杰,郑殿峰,梁晓艳. 烯效唑(S3307)和胺鲜酯(DTA-6)对马铃薯叶与块茎糖代谢及产量的影响[J]. 作物杂志, 2019, (4): 148–153
[7] 梁俊梅,张君,安昊,景宇鹏,李焕春,段玉. 养分专家系统推荐施肥对马铃薯产量及肥料利用率的影响[J]. 作物杂志, 2019, (4): 133–138
[8] 张海斌,蒙美莲,刘坤雨,章凌翔,陈有君. 不同轮作模式对马铃薯干物质积累、病害发生及产量的影响[J]. 作物杂志, 2019, (4): 170–175
[9] 张萌,芶久兰,魏全全,陈龙,何佳芳. 不同生物有机肥对贵州高海拔春马铃薯生长及土壤肥力的影响[J]. 作物杂志, 2019, (3): 132–136
[10] 郝智勇,杨广东,邱广伟,胡尊艳,王立春,王海艳. 马铃薯高类胡萝卜素资源材料筛选[J]. 作物杂志, 2019, (2): 71–77
[11] 张红,郑世英,梁淑霞,陈广凤,王明友. 高淀粉加工专用型马铃薯育种研究进展[J]. 作物杂志, 2019, (1): 9–14
[12] 王伟伟, 王洪洋, 刘晶, 梁静思, 李灿辉, 唐唯. 马铃薯重要性状QTL定位及3个抗病性状分子标记辅助选育[J]. 作物杂志, 2018, (6): 10–16
[13] 宿飞飞,张静华,李勇,刘尚武,刘振宇,王绍鹏,万书明,陈曦,高云飞,胡林双,吕典秋. 不同灌溉方式对两个马铃薯品种生理特性和水分利用效率的影响[J]. 作物杂志, 2018, (5): 97–103
[14] 张晓勇,杨友联,李树江,熊荣川,向红. 外源激素对低温胁迫下脱毒马铃薯扦插苗早衰的影响[J]. 作物杂志, 2018, (4): 95–101
[15] 柴莹,徐永清,付瑶,李秀钰,贺付蒙,韩英琦,冯哲,李凤兰. 马铃薯干腐病病原镰孢菌体内产细胞壁降解酶特性研究[J]. 作物杂志, 2018, (4): 154–160
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王海涛,刘存敬,唐丽媛,张素君,李兴河,蔡肖,张香云,张建宏. 河北省杂交棉培育现状及发展趋势[J]. 作物杂志, 2019, (5): 1 –8 .
[2] 黄玉芳,叶优良,赵亚南,岳松华,白红波,汪洋. 施氮量对豫北冬小麦产量及子粒主要矿质元素含量的影响[J]. 作物杂志, 2019, (5): 104 –108 .
[3] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15 –21 .
[4] 曹廷杰,张玉娥,胡卫国,杨剑,赵虹,王西成,周艳杰,赵群友,李会群. 黄淮南片麦区新育成品种(系)中3个矮秆基因分子标记检测及其与农艺性状的关系[J]. 作物杂志, 2019, (6): 14 –19 .
[5] 张婷,逯腊虎,杨斌,袁凯,张伟,史晓芳. 黄淮麦区4省小麦种质农艺性状的比较分析[J]. 作物杂志, 2019, (6): 20 –26 .
[6] 王永行,单飞彪,闫文芝,杜瑞霞,杨钦方,刘春晖,白立华. 基于向日葵DUS测试的遗传多样性分析及代码分级[J]. 作物杂志, 2019, (5): 22 –27 .
[7] 师赵康,赵泽群,张远航,徐世英,王宁,王伟杰,程皓,邢国芳,冯万军. 玉米自交系幼苗生物量积累及根系形态对两种氮素水平的反应及聚类分析[J]. 作物杂志, 2019, (5): 28 –36 .
[8] 张中伟,杨海龙,付俊,谢文锦,丰光. 玉米粒长性状主基因+多基因遗传分析[J]. 作物杂志, 2019, (5): 37 –40 .
[9] 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 41 –45 .
[10] 李洪涛,许瀚元,李景芳,祝庆,迟铭,王军. 玉米叶绿素含量基因效应分析[J]. 作物杂志, 2019, (5): 46 –51 .