作物杂志,2019, 第6期: 2732 doi: 10.16035/j.issn.1001-7283.2019.06.005
赵丽娟1,袁红梅2,赵丽伟3,郭文栋4,李志江1,李祥羽1,马金丰1,李延东1,宋维富1,杨雪峰1,刘东军1
Zhao Lijuan1,Yuan Hongmei2,Zhao Liwei3,Guo Wendong4,Li Zhijiang1,Li Xiangyu1,Ma Jinfeng1,Li Yandong1,Song Weifu1,Yang Xuefeng1,Liu Dongjun1
摘要:
谷子矮秆突变体93090(暂命名为d93090)是野生型高秆谷子品系93090经 60Co-γ辐射诱变获得的,本研究对其矮化表型及其对赤霉素的敏感性进行了分析。结果表明,d93090株高约为野生型的60%左右,叶色变深、茎秆稍倾斜、茎节数不变、花期较对照推迟3~5d;幼苗期的苗长、第二叶鞘长和胚轴长均对外源GA3敏感,拔节期喷施外源GA3,d93090的株高部分恢复;d93090内源GAl含量显著低于野生型。d93090突变体是个半矮秆的突变类型,为谷子矮化育种提供了新材料,其矮秆性与GA生物合成途径相关。
[1] |
Huang N, Courtois B, Wang G L . Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity, 1996,77(2):130-137.
doi: 10.1038/hdy.1996.117 |
[2] |
Yang X C, Hwa C M . Genetic modification of plant architecture and variety improvement in rice. Heredity, 2008,101(5):396-404.
doi: 10.1038/hdy.2008.90 pmid: 18716608 |
[3] | Asano K, Miyao A, Hirochika H , et al. SSD1,which encodes a plant-specific novel protein,controls plant elongation by regulating cell division in rice. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 2010,86(3):265-273. |
[4] |
Wang M L, Zhao Y, Chen F , et al. Inheritance and potentials of a mutated dwarfing gene ndf1 in Brassica napus. Plant Breeding, 2004,123(5):449-453.
doi: 10.1111/pbr.2004.123.issue-5 |
[5] |
Doebley J, Stec A, Hubbard L . The evolution of apical dominance in maize. Nature, 1997,386:485-488.
doi: 10.1038/386485a0 pmid: 9087405 |
[6] |
Mitsunaga S, Tashiro T, Yamaguchi J . Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theoretical and Applied Genetics, 1994,87(6):705-712.
doi: 10.1007/BF00222896 pmid: 24190414 |
[7] | Kobayashi M, Sakurai A, Saka H , et al. Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiology, 1989,30:963-969. |
[8] |
Sasaki A, Itoh H, Gomi K , et al. Accumulation of phosphorylated repressor for gibberellin signaling in art F-box mutant. Science, 2003,299:1896-1898.
doi: 10.1126/science.1081077 pmid: 12649483 |
[9] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M , et al. Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellins. Nature, 2005,437:693-698.
doi: 10.1038/nature04028 pmid: 16193045 |
[10] | 李文强 . 水稻矮秆基因d62和光叶基因gl1的图位克隆及功能研究. 杭州:浙江大学, 2010. |
[11] |
Khush G S . Greenrevolution:the way forward. Nature Reviews Genetics, 2001,2(10):815-822.
doi: 10.1038/35093585 pmid: 11584298 |
[12] | 赵丽娟, 马金丰, 李延东 , 等. 60Co-γ射线辐射谷子干种子诱变效应的研究. 作物杂志 , 2017(1):38-43. |
[13] | 田伯红 . 禾谷类作物抗倒伏性的研究方法与谷子抗倒性评价. 植物遗传资源学报, 2013,14(2):265-269. |
[14] | 刘秉华, 王山荭, 杨丽 , 等. 不同遗传背景矮败小麦的性状表现. 作物学报, 2001,27(2):207-211. |
[15] |
Ellis M H, Spielmeyer W, Gale K R , et al. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002,105(6/7):1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931 |
[16] | 陈亮 . 矮秆基因Rht12对小麦重要农艺性状的遗传效应及新矮秆突变体的筛选. 杨凌:西北农林科技大学, 2014. |
[17] |
李杏普, 兰素缺, 张业伦 , 等. Rht8、Rht10、Rht12矮杆基因对小麦营养生长和生殖生长发育的影响. 华北农学报, 2009,24(S1):50-53.
doi: 10.7668/hbnxb.2009.S1.013 |
[18] | 唐娜 . 矮秆基因在小麦抗旱节水选育中的利用研究. 杨凌:西北农林科技大学, 2009. |
[19] |
Li W, Wu J, Weng S , et al. Identification and characterization of dwarf 62,a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta, 2010,232(6):1383-1396.
doi: 10.1007/s00425-010-1263-1 |
[20] |
Thomas S G, Sun T . Update on gibberellin signaling. A tale of the tall and the short. Plant Physiology, 2004,135(2):668-676.
doi: 10.1104/pp.104.040279 pmid: 15208413 |
[21] |
Bennetzen J L, Schmutz J, Wang H , et al. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30(6):555-561.
doi: 10.1038/nbt.2196 |
[22] |
Zhang G Y, Liu X, Quan, Z W , et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012,30(6):549-554.
doi: 10.1038/nbt.2195 |
[1] | 宋健,晓宁,王海岗,陈凌,王君杰,刘思辰,乔治军. SiASRs家族基因的鉴定及表达分析[J]. 作物杂志, 2019, (6): 3342 |
[2] | 张笛,苗兴芬,王雨婷. 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选[J]. 作物杂志, 2019, (6): 4349 |
[3] | 时丽冉,郝洪波,崔海英,李明哲. 遮光对谷子光合性能及快速叶绿素荧光动力学特征的影响[J]. 作物杂志, 2019, (5): 125128 |
[4] | 吕伟,韩俊梅,任果香,文飞,王若鹏,刘文萍. 山西芝麻种质资源遗传多样性分析[J]. 作物杂志, 2019, (5): 5763 |
[5] | 郭瑞锋,任月梅,杨忠,任广兵,张绶,冯婧. 谷子化学杀雄剂筛选[J]. 作物杂志, 2019, (5): 6468 |
[6] | 岳琳祺,施卫萍,郭佳晖,郭平毅,郭杰. 谷子角质合成基因对干旱胁迫的响应[J]. 作物杂志, 2019, (4): 183190 |
[7] | 公丹,潘晓威,王素华,王丽侠,程须珍. 国家食用豆产业技术体系绿豆新品种(系)联合鉴定[J]. 作物杂志, 2019, (4): 3036 |
[8] | 李颜方,杜艳伟,张正,王高鸿,赵根有,赵晋锋,余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化[J]. 作物杂志, 2019, (3): 7379 |
[9] | 刘韶光,赵夏童,宋喜娥,原向阳,董淑琦,郭美俊,郭平毅. 膜间喷施芽前除草剂对谷子安全性及对杂草防效的影响[J]. 作物杂志, 2019, (2): 173178 |
[10] | 杜艳伟,赵晋锋,王高鸿,李颜方,赵根有,阎晓光. 春播谷子成熟期抗倒伏性研究[J]. 作物杂志, 2019, (1): 141145 |
[11] | 梅日·阿黑哈提,吾买尔夏提·塔汉,艾尔肯·艾林别克,王玉祥. 新疆及周边地区糜子种质资源表型多样性分析[J]. 作物杂志, 2018, (6): 4852 |
[12] | 王小林,纪晓玲,张盼盼,张雄,张静. 黄土高原旱地谷子品种地上器官干物质分配与产量形成相关性分析[J]. 作物杂志, 2018, (5): 150155 |
[13] | 魏萌涵, 解慧芳, 邢璐, 宋慧, 王淑君, 王素英, 刘海萍, 付楠, 刘金荣. 华北地区谷子产量与农艺性状的综合评价分析[J]. 作物杂志, 2018, (4): 4247 |
[14] | 李志华,穆婷婷,刘鑫,李会霞,田岗. 4个谷子不育系主要农艺性状的配合力分析[J]. 作物杂志, 2018, (3): 6167 |
[15] | 岳茂林,薛蔚荣,张瑞栋,岳忠孝,吕瑞洲,郭鹏燕. 不同行距配置对谷子农艺性状及产量的影响[J]. 作物杂志, 2018, (2): 9396 |
|