作物杂志,2021, 第4期: 73–79 doi: 10.16035/j.issn.1001-7283.2021.04.011

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同年代玉米品种灌浆期的光合特征对高温适应性的初步研究

陶志强1(), 闫鹏1, 张学鹏2   

  1. 1中国农业科学院作物科学研究所/农业农村部作物生理生态重点实验室,100081,北京
    2中国农业大学农学院,100193,北京
  • 收稿日期:2020-12-14 修回日期:2021-02-03 出版日期:2021-08-15 发布日期:2021-08-13
  • 作者简介:陶志强,主要从事作物栽培理论与技术研究,E-mail:taozhiqiang@caas.cn
  • 基金资助:
    国家自然科学基金(31701387)

Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties

Tao Zhiqiang1(), Yan Peng1, Zhang Xuepeng2   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2020-12-14 Revised:2021-02-03 Online:2021-08-15 Published:2021-08-13

摘要:

为探讨随时代发展我国玉米品种在更替过程中植株光合特征对灌浆期高温胁迫的适应性,选用3个不同年代的玉米主栽品种白单4号(1960s)、中单2号(1980s)和郑单958(2000s),设置2个播种期(2018年4月15日和4月25日)形成2个灌浆期高温胁迫处理,比较2种便携式光合分析仪(SPAD-502叶绿素仪和SunScan植物冠层分析仪)测定灌浆期穗位叶叶绿素相对含量(SPAD)、群体叶面积指数(LAI)和群体基部光合有效辐射(PAR)等光合特征的差异,对基于籽粒产量计算得到的耐热指数(STI)与SPAD、LAI和基部PAR进行相关性分析。结果表明,玉米品种随着时代的发展,遭受灌浆期高温胁迫后,产量逐渐提高、产量降幅逐渐减少、STI逐渐提高;单株玉米穗位叶的SPAD值和群体LAI的降幅逐渐减少,群体基部PAR的增幅逐渐减少;STI与SPAD值、LAI的降幅、基部PAR的增幅均达显著负相关(P<0.05)。综合研究结果可知,玉米品种随着时代的发展增强了自身对灌浆期高温的适应能力,当遭受灌浆期高温胁迫时,能够保持较高的单株叶片光合能力、群体光合有效辐射的截获和利用能力,进而提供充足的光合同化物,满足产量形成的需要。

关键词: 玉米, 演替, 灌浆期, 耐热性, 冠层

Abstract:

In order to investigate the adaptation of the photosynthetic properties of plants in the process of maize evolution at grain filling stage to high temperature stress over time in China, three main varieties of maize from three different epochs were selected which were Baidan 4 (1960s), Zhongdan 2 (1980s) and Zhengdan 958 (2000s). High temperature stress treatment at grain filling stage was formed by setting two sowing dates on April 15th and 25th, 2018. We compared the differences in relative chlorophyll content (SPAD), population leaf area index (LAI) and photosynthetic effective radiation (PAR) at the base of the population at the filling stage by using two portables photosynthetic analysers (SPAD-502 chlorophyll meter and SunScan plant canopy analyzer). Moreover, the correlations between stress tolerance indices (STI) and SPAD, LAI and PAR at the base of population were analyzed. The results showed that with the development of times, the yield of the maize varieties increased gradually after they were subjected to high temperature stress during the grain filling period, STI gradually increased; and decline of SPAD value of ear leaf and LAI of population were decline, and increase of PAR at population base of maize was also reduced. STI were significantly negatively correlated with the decline of SPAD and LAI, and the increase of PAR at population base (P < 0.05). It was shown that the evolution of the maize varieties over time has improved their ability to adapt to high temperatures during the grain filling period, if the maize was exposed to a high temperature load during the grain filling, the photosynthetic capacity of individual maize leaves and the interception and utilization of photosynthetic radiation of the population in the case of new varieties are not reduced more than in the case of old varieties in order to provide sufficient photosynthesis to cover the demand of yield formation.

Key words: Maize, Evolution, Grain filling stage, Heat tolerance, Canopy

表1

不同年代玉米品种灌浆期经历的高温情况

播种期(月-日)
Sowing date (month-day)
品种
Variety
开花后0~50d(月-日)
0-50 days after anthesis (month-day)
≥33℃天数
≥33℃ days (d)
日均温
Mean day temperature (℃)
04-15 白单4号 07-03–08-23 15 28.3
中单2号 07-02–08-21 15 28.3
郑单958 06-30–08-19 15 28.3
04-25 白单4号 07-14–09-02 10 26.8
中单2号 07-12–08-31 10 26.8
郑单958 07-10–08-29 10 26.8

图1

不同年代玉米品种的籽粒产量与耐热指数

图2

不同处理的玉米穗位叶SPAD值在灌浆期的变化

图3

不同处理的玉米LAI在灌浆期的变化

图4

不同处理的玉米群体基部PAR在灌浆期的变化

[1] 中华人民共和国农业农村部. [2020-12-01]. http://zdscxx.moa.gov.cn:8080/nyb/pc/frequency.jsp.
[2] Meng Q, Wang H, Yan P, et al. Designing a new cropping system for high productivity and sustainable water usage under climate change. Scientific Reports, 2017,7:41587.
[3] Zhang X Y, Pei D, Hu C S. Conserving groundwater for irrigation in the North China Plain. Irrigation Science, 2003,21(4):159-166.
[4] 隋鹏. 黄淮海平原节水种植模式生态经济分析及优化配置研究. 北京:中国农业大学, 2005.
[5] Tao Q, Zhou Y Y, Guo Q, et al. A novel plant growth regulator alleviates high-temperature stress in maize. Agronomy Journal, 2018,110(6):2350-2359.
[6] Tian B, Zhu J, Nie Y, et al. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science, 2019,205(1):77-87.
[7] Yang H, Huang T, Ding M, et al. High temperature during grain filling impacts on leaf senescence in waxy maize. Agronomy Journal, 2017,109(3):906-916.
[8] 张萍, 陈冠英, 耿鹏, 等. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017,50(11):2061-2070.
[9] 赵华甫, 张凤荣, 李佳, 等. 北京都市农业种植制度的发展方向——春玉米一熟制. 中国生态农业学报, 2008,16(2):469-474.
[10] 戴明宏, 陶洪斌, Binder J, 等. 春、夏玉米物质生产及其对温光资源利用比较. 玉米科学, 2008(4):82-85,90.
[11] 刘明, 陶洪斌, 王璞, 等. 华北平原水氮优化条件下不同种植制度产量、水氮利用及经济效益分析. 中国农业大学学报, 2008,13(4):12-18.
[12] 陶志强, 陈源泉, 李超, 等. 华北低平原不同播种期春玉米的产量表现及其与气象因子的通径分析. 作物学报, 2013,39(9):1628-1634.
[13] Yan P, Tao Z Q, Chen Y Q, et al. Spring maize kernel number and assimilate supply responses to high-temperature stress under field conditions. Agronomy Journal, 2017,109(4):1433-1442.
[14] 郑洪建, 董树亭, 王空军, 等. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001,27(6):862-868.
[15] 李绍长, 白萍, 吕新, 等. 不同生态区及播期对玉米籽粒灌浆的影响. 作物学报, 2003,29(5):775-778.
[16] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010,43(2):329-336.
[17] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 1980,31:491-543.
[18] Tao Z Q, Chen Y Q, Li C, et al. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain — A review. Journal of Integrative Agriculture, 2016,15(12):2677-2687.
[19] Ben-Asher J, Garcia A G Y, Hoogenboom G. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica, 2008,46(4):595-603.
[20] Karim M A, Fracheboud Y, Stamp P. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiologia Plantarum, 1999,105(4):685-693.
[21] 胡秀丽, 李艳辉, 杨海荣, 等. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力. 作物学报, 2010,36(4):636-644.
[22] 陶志强, 陈源泉, 邹娟秀, 等. 不同耐热型春玉米品种对高温的光谱特征响应. 光谱学与光谱分析, 2016,36(2):520-526.
[23] Li C F, Tao Z Q, Liu P, et al. Increased grain yield with improved photosynthetic characters in modern maize parental lines. Journal of Integrative Agriculture, 2015,14(9):1735-1744.
[24] Ci X K, Zhang D G, Li X H, et al. Trends in ear traits of chinese maize cultivars from the 1950s to the 2000s. Agronomy Journal, 2013,105(1):20-27.
[25] Sun Q, Liang X, Zhang D, et al. Trends in drought tolerance in Chinese maize cultivars from the 1950s to the 2000s. Field Crops Research, 2017,201:175-183.
[26] 牛平平, 穆心愿, 张星, 等. 不同年代玉米品种根系对低氮干旱胁迫的响应分析. 作物学报, 2015,41(7):1112-1120.
[27] 陈群, 耿婷, 侯雯嘉, 等. 近20年东北气候变暖对春玉米生长发育及产量的影响. 中国农业科学, 2014,47(10):1904-1916.
[28] Xiao D, Qi Y, Shen Y, et al. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theoretical and Applied Climatology, 2016,124(3/4):653-661.
[29] 郑云普, 徐明, 王建书, 等. 气候变暖对华北平原玉米叶片形态结构和气体交换过程的影响. 生态学报, 2016,36(6):1526-1538.
[30] Team R O. R:A language and environment for statistical computing. R Foundation for Statistical Computing V,Austria, 2019.
[31] 张吉旺, 董树亭, 王空军, 等. 大田增温对夏玉米光合特性的影响. 应用生态学报, 2008,19(1):81-86.
[32] Tian C, Han J, Li J, et al. Effects of row direction and row spacing on maize leaf senescence. PLoS ONE, 2019,14(4):e0215330.
[33] Zhang X, Cheng J, Wang B, et al. Optimum sowing dates for high-yield maize when grown as sole crop in the North China Plain. Agronomy, 2019,9(4):198.
[1] 王庆彬, 聂振田, 卢洁春, 彭春娥, 张民, 孟慧, 刘治国, 耿全政. 宛氏拟青霉提取物对夏玉米产量及氮素利用的影响[J]. 作物杂志, 2021, (4): 166–171
[2] 张瑞栋, 高铭悦, 岳忠孝, 周宇飞, 曹雄. 灌浆期不同阶段干旱对高粱籽粒淀粉积累的影响[J]. 作物杂志, 2021, (4): 172–177
[3] 冯艳飞, 杨威, 任国鑫, 邓杰, 李文龙, 高树仁. 黑龙江省部分玉米杂交种的综合评价[J]. 作物杂志, 2021, (4): 46–50
[4] 刘天昊, 张翼飞, 王怀鹏, 杨克军, 张津松, 孙逸珊, 肖珊珊, 徐荣琼, 杜嘉瑞, 李佳宇, 彭程, 王宝生. 叶面喷施硅肥对寒地玉米干物质积累分配及产量品质的调控效应[J]. 作物杂志, 2021, (4): 112–117
[5] 梁茜, 吴清山, 葛均筑, 吴锡冬, 杨永安, 侯海鹏, 张垚, 马志琪. 播期对华北平原雨养夏玉米产量形成与资源利用效率的影响[J]. 作物杂志, 2021, (4): 136–143
[6] 高鹏, 郭美俊, 杨雪芳, 董淑琦, 温银元, 郭平毅, 原向阳. 谷子和玉米叶片光合荧光参数对烟嘧磺隆胁迫的响应差异[J]. 作物杂志, 2021, (3): 70–77
[7] 刘剑钊, 袁静超, 梁尧, 贺宇, 张水梅, 史海鹏, 蔡红光, 任军. 玉米秸秆全量深翻还田地力提升技术模式实证及效益分析[J]. 作物杂志, 2021, (2): 135–139
[8] 李忠南, 王越人, 邬生辉, 刘励蔚, 曲海涛, 孙振宇, 李光发. 玉米单倍体自然加倍花粉结实力遗传的初步研究[J]. 作物杂志, 2021, (2): 57–61
[9] 张学鹏, 李腾, 王彪, 刘晴, 刘涵瑜, 陶志强, 隋鹏. 玉米叶片“源”的高温胁迫阈值研究[J]. 作物杂志, 2021, (2): 62–70
[10] 李瑞杰, 闫鹏, 王庆燕, 许艳丽, 卢霖, 董志强, 张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米功能叶光合生理特性和产量的影响[J]. 作物杂志, 2021, (1): 135–142
[11] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响[J]. 作物杂志, 2021, (1): 143–149
[12] 刘艳, 宫亮, 邢月华, 包红静. 基于正交设计的玉米有机无机培肥模式优化研究[J]. 作物杂志, 2021, (1): 168–174
[13] 齐建双, 夏来坤, 黄保, 李春盈, 马智艳, 丁勇, 谷利敏, 张君, 张凤启, 穆心愿, 唐保军, 赵发欣, 张兰薰. 基于熵权的DTOPSIS法和灰色局势决策法在玉米品种区域试验中的应用探讨[J]. 作物杂志, 2021, (1): 60–67
[14] 龚松玲, 曹培, 高珍珍, 李成伟, 刘章勇, 朱波. 种植模式对南方作物产量及资源利用效率的影响[J]. 作物杂志, 2021, (1): 68–73
[15] 杨娟, 姜阳明, 周芳, 张军, 罗海登, 田山君. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021, (1): 82–89
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!