作物杂志,2021, 第6期: 145–151 doi: 10.16035/j.issn.1001-7283.2021.06.023

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

稻鱼共作对水稻叶绿素荧光特征及产量的影响

王奇1(), 李妹娟2, 章家恩3,4,5,6(), 汤嘉欣1, 曾文静1, 周磊1, 杨清心1, 江明敏1, 伍嘉源1, 罗明珠1()   

  1. 1华南农业大学农学院,510642,广东广州
    2广东省农业科学院水稻研究所,510640,广东广州
    3华南农业大学资源环境学院,510642,广东广州
    4广东省生态循环农业重点实验室,510642,广东广州
    5广东省现代生态农业与循环农业工程技术研究中心,510642,广东广州
    6农业农村部华南热带农业环境重点实验室,510642,广东广州
  • 收稿日期:2021-01-21 修回日期:2021-05-12 出版日期:2021-12-15 发布日期:2021-12-16
  • 通讯作者: 章家恩,罗明珠
  • 作者简介:王奇,主要从事作物栽培与农业生态学研究,E-mail: 312548392@qq.com
  • 基金资助:
    广东省科技计划项目(2019B030301007);广东省现代农业产业技术体系建设项目(2019KJ105)

Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice

Wang Qi1(), Li Meijuan2, Zhang Jia’en3,4,5,6(), Tang Jiaxin1, Zeng Wenjing1, Zhou Lei1, Yang Qingxin1, Jiang Mingmin1, Wu Jiayuan1, Luo Mingzhu1()   

  1. 1College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    2Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    3College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong,China
    4Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, Guangdong, China
    5Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, Guangdong, China
    6Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, China
  • Received:2021-01-21 Revised:2021-05-12 Online:2021-12-15 Published:2021-12-16
  • Contact: Zhang Jia’en,Luo Mingzhu

摘要:

为探究稻鱼共作系统对水稻叶绿素含量(SPAD值)、荧光参数及产量的影响,设置9000(M1)、15 000(M2)和21 000尾/hm2(M3)稻田鱼放养密度,以水稻单作为对照(CK),测定水稻不同生育期叶片SPAD值、叶绿素荧光参数和水稻产量及其构成要素。结果表明,与CK相比,在水稻分蘖期和成熟期,各处理叶片光合系统Ⅱ的最大光化学量子产量(Fv/Fm)和潜在光化学活性(Fv/Fo)均显著提高,且成熟期M1和M2处理的剑叶非光化学猝灭系数qN和NPQ均显著降低;抽穗期各处理SPAD值均比CK显著提高。与CK相比,各处理结实率均显著提高,实际产量均增加,田鱼产量表现为M2>M3>M1,但无显著差异。相关性分析表明,水稻叶片SPAD值、Fv/FoFv/Fm与有效穗数、结实率和产量呈显著正相关,qN和NPQ与穗粒数呈显著负相关。综上,稻鱼共作系统提高了光能转化效率,减少了光能热耗散,改善了水稻的光合特性,有利于稳定及提高水稻产量。本试验中稻田鱼15000尾/hm2为适宜的放养密度。

关键词: 稻鱼共作, SPAD, 叶绿素荧光参数, 产量

Abstract:

To investigate the effects of rice-fish co-culture on chlorophyll content (SPAD value), fluorescence parameters and yield in rice, the field plot experiment of three treatments was designed with three field fish stocking densities, 9 000 tails/ha (M1), 15 000 tails/ha (M2), and 21 000 tails/ha (M3), taking the rice monoculture as control (CK), the SPAD values and chlorophyll fluorescence parameters of rice leaves were determined respectively, and rice yield and its components were measured. The results showed that compared with CK, the PSⅡ maximum photochemical quantum yield (Fv/Fm) and PSII potential photochemical activity (Fv/Fo) of rice leaves of the co-culture treatment significantly increased at tillering stage and maturity stage; At maturity stage, the non-photochemical quenching coefficient (qN and NPQ) of rice leaves were significantly reduced in M1 and M2 treatments; At heading stage, SPAD value of rice leaves of three rice-fish co-culture treatments were significantly increased compared with CK. The seed-setting rates of M1, M2 and M3 treatments were also significantly increased, the actual yield of rice under treatments of rice-fish co-culture showed no significant difference, and the yield of field fish showed a trend of M2 > M3 > M1, but there was no significant difference among them. Correlation analysis results showed that SPAD value, Fv/Fo, Fv/Fm and productive panicle, seed-setting rate and yield were positively correlated, while the qN and NPQ negatively correlated with grain number per panicle. To sum up, the rice-fish co-culture could improve the efficiency of conversion of light energy and the photosynthetic characteristics of rice, reduce the heat dissipation energy, this would help to sustain or even improve rice yield, and 15 000 tails/ha was the more suitable stocking density of field fish.

Key words: Rice-fish co-culture, SPAD, Chlorophyll fluorescence parameter, Yield

图1

不同稻鱼共作处理下水稻叶片SPAD值 不同小写字母表示不同处理间差异显著(P<0.05)。下同

表1

不同稻鱼共作处理下分蘖期水稻剑叶的叶绿素荧光参数

处理Treatment Y qN NPQ Fv/Fo Fv/Fm
CK 0.302±0.001a 0.56±0.004a 1.00±0.02a 5.20±0.07b 0.839±0.002b
M1 0.318±0.004a 0.54±0.014a 0.92±0.05a 5.64±0.14a 0.849±0.003a
M2 0.320±0.004a 0.55±0.040a 0.98±0.13a 5.58±0.08a 0.848±0.002a
M3 0.296±0.020a 0.57±0.019a 1.04±0.06a 5.59±0.04a 0.848±0.001a

表2

不同稻鱼共作处理下抽穗期水稻剑叶的叶绿素荧光参数

处理Treatment Y qN NPQ Fv/Fo Fv/Fm
CK 0.320±0.013a 0.58±0.030a 1.08±0.12a 5.19±0.02b 0.838±0.001b
M1 0.332±0.009a 0.56±0.012a 0.96±0.04a 5.34±0.06ab 0.842±0.002ab
M2 0.323±0.002a 0.58±0.004a 1.05±0.02a 5.49±0.12a 0.846±0.003a
M3 0.337±0.004a 0.59±0.007a 1.08±0.03a 5.44±0.07ab 0.845±0.002a

表3

不同稻鱼共作处理下成熟期水稻剑叶的叶绿素荧光参数

处理Treatment Y qN NPQ Fv/Fo Fv/Fm
CK 0.214±0.041a 0.54±0.009a 0.84±0.03a 3.19±0.08b 0.761±0.005b
M1 0.208±0.038a 0.49±0.007c 0.70±0.02c 3.63±0.21a 0.783±0.010a
M2 0.208±0.050a 0.50±0.004bc 0.73±0.01bc 3.71±0.06a 0.788±0.002a
M3 0.229±0.028a 0.52±0.012ab 0.81±0.04ab 3.84±0.09a 0.793±0.004a

表4

不同稻鱼共作处理下水稻产量及其构成要素和田鱼产量及存活率

处理
Treatment
有效穗数
Productive panicle
(×104/hm2)
穗粒数
Grain number
per panicle
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
水稻产量
Rice yield
(t/hm2)
存活率
Survival
rate (%)
田鱼产量
Fish yield
(kg/hm2)
CK 447.22±10.02a 105.26±1.09c 18.57±0.10a 68.92±0.76b 5.02±0.13a / /
M1 435.00±24.11a 123.97±4.87a 19.76±0.51a 73.29±0.66a 5.03±0.31a 62.96±9.71a 177.78±23.37a
M2 472.50±11.46a 116.71±1.59ab 19.49±0.45a 74.19±1.86a 5.47±0.39a 56.67±5.05a 189.11±27.31a
M3 500.00±28.83a 113.52±2.95bc 19.76±0.25a 73.15±0.72a 5.60±0.37a 45.71±10.72a 182.50±4.82a

表5

成熟期SPAD值、叶绿素荧光参数与水稻产量及其构成要素的相关性分析

指标
Index
SPAD qN NPQ Fv/Fo Fv/Fm 有效穗数
Productive
panicle
穗粒数
Grain number
per panicle
千粒重
1000-grain
weight
结实率
Seed-setting
rate
qN -0.569
NPQ -0.501 0.983**
Fv/Fo 0.492 -0.371 -0.209
Fv/Fm 0.513 -0.394 -0.233 0.998**
有效穗数Productive panicle 0.708* -0.123 0.015 0.702* 0.711*
穗粒数Grain number per panicle 0.274 -0.686* -0.649* 0.208 0.242 0.131
千粒重1000-grain weight 0.350 -0.421 -0.313 0.470 0.476 0.357 0.543
结实率Seed-setting rate 0.658* -0.473 -0.360 0.630* 0.643* 0.662* 0.433 0.382
产量Yield 0.628* -0.131 -0.002 0.605* 0.615* 0.843** 0.178 0.491 0.831**
[1] 游修龄. 稻田养鱼——传统农业可持续发展的典型之一. 农业考古, 2006(4):222-224.
[2] 吴敏芳, 郭梁, 张剑, 等. 稻鱼共作对稻纵卷叶螟和水稻生长的影响. 浙江农业科学, 2016, 57(3):446-449.
[3] 吕广动, 黄璜, 王忍, 等. 紫云英还田耦合稻鱼共生对双季水稻群体生长特性及产量的影响. 生态学杂志, 2020, 39(12):4057-4067.
[4] 张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响. 应用生态学报, 2017, 28(1):299-307.
[5] Ren W, Hu L, Zhang J, et al. Can positive interactions between cultivated species help to sustain modern agriculture? Frontiers in Ecology and the Environment, 2014, 12(9):507-514.
doi: 10.1890/130162
[6] 张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16(4):444.
[7] Xu Q, Ma X, Lü T, et al. Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water, 2020, 12(1):289.
doi: 10.3390/w12010289
[8] Jumrani K, Bhatia V S, Pandey G P. Impact of elevated temperatures on specific leaf weight,stomatal density,photosynthesis and chlorophyll fluorescence in soybean. Photosynthesis Research, 2017, 131(3):333-350.
doi: 10.1007/s11120-016-0326-y
[9] 徐晨, 刘晓龙, 李前, 等. 供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响. 植物学报, 2018, 53(2):185-195.
[10] Guo Y Y, Yu H Y, Kong D S, et al. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 2016, 54(4):524-531.
doi: 10.1007/s11099-016-0206-x
[11] Zhang M, Tang S, Huang X, et al. Selenium uptake,dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany, 2014, 107:39-45.
doi: 10.1016/j.envexpbot.2014.05.005
[12] Li M, Li R, Zhang J, et al. A combination of rice cultivar mixed-cropping and duck co-culture suppressed weeds and pests in paddy fields. Basic and Applied Ecology, 2019, 40:67-77.
doi: 10.1016/j.baae.2019.09.003
[13] 应晓成, 朱奕雯, 蒋铭伟, 等. 不同稻田综合种养模式对南粳46水稻生长影响的研究. 安徽农学通报, 2019, 25(16):38-39.
[14] Teng Q, Hu X, Luo F, et al. Influences of introducing frogs in the paddy fields on soil properties and rice growth. Journal of Soils and Sediments, 2016, 16(1):51-61.
doi: 10.1007/s11368-015-1183-6
[15] Teng Q, Hu X, Cheng C, et al. Ecological effects of rice-duck integrated farming on soil fertility and weed and pest control. Journal of Soils and Sediments, 2016, 16(10):2395-2407.
doi: 10.1007/s11368-016-1455-9
[16] Xie J, Hu L, Tang J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50):E1381-E1387.
[17] 胡文河, 齐义杰, 孙明春, 等. 水稻稀植后光合生理特性的研究. 吉林农业大学学报, 2000, 22(4):11-14.
[18] 侯红乾, 林洪鑫, 刘秀梅, 等. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响. 作物学报, 2020, 46(2):280-289.
[19] 杨艳君, 赵红梅, 曹玉风, 等. 施肥和密度对张杂谷5号叶绿素荧光特性的影响. 华北农学报, 2015, 30(6):201-208.
[20] Lin Y, Hu Y, Ren C, et al. Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. Journal of Integrative Agriculture, 2013, 12(12):2164-2171.
doi: 10.1016/S2095-3119(13)60346-9
[21] 刘福妹, 劳庆祥, 庞圣江, 等. 不同氮素水平对米老排苗期生长和叶绿素荧光特性的影响. 西北林学院学报, 2018, 33(1):62-67.
[22] 郭海松, 罗衡, 李丰, 等. 不同水稻栽培密度下青田稻—鱼共生系统的土壤肥力. 水产学报, 2020, 44(5):805-815.
[23] 隆斌庆, 陈灿, 黄璜, 等. “稻+鱼+再生稻”模式对稻田土壤氮、磷、钾养分含量的影响. 作物研究, 2019, 33(5):408-414.
[24] 肖向予, 李艳蔷. 稻鳅共作对土壤性质及水稻产量构成的影响. 安徽农业科学, 2017, 45(12):31-33.
[25] Hu L, Zhang J, Ren W, et al. Can the co-cultivation of rice and fish help sustain rice production?. Scientific Reports, 2016, 6(1):28728.
doi: 10.1038/srep28728
[26] 王复标, 黄福灯, 程方民, 等. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察. 作物学报, 2012, 38(5):871-879.
[27] 魏海燕, 张洪程, 马群, 等. 不同氮肥利用效率水稻基因型剑叶光合特性. 作物学报, 2009, 35(12):2243-2251.
[28] 郭相平, 王甫, 王振昌, 等. 不同灌溉模式对水稻抽穗后叶绿素荧光特征及产量的影响. 灌溉排水学报, 2017, 36(3):1-6.
[29] 吴晓丽, 汤永禄, 李朝苏, 等. 不同生育时期渍水对冬小麦旗叶叶绿素荧光及籽粒灌浆特性的影响. 中国生态农业学报, 2015, 23(3):309-318.
[1] 唐刚, 廖萍, 眭锋, 吕伟生, 张俊, 曾勇军, 黄山. 秸秆全量还田下晚稻季翻耕对双季稻田温室气体排放和产量的影响[J]. 作物杂志, 2021, (6): 101–107
[2] 苏文平, 王欢, 艾木拉姑丽·库尔班, 赵鑫琳, 薛丽华, 章建新, 刘俊, 孙诗仁. 北疆临冬播小麦品种间生育特性及产量比较[J]. 作物杂志, 2021, (6): 108–114
[3] 杨娜, 席吉龙, 王珂, 席天元, 张建诚, 姚景珍, 王健. 春季灌水对晋南晚播冬小麦产量和水分利用的影响[J]. 作物杂志, 2021, (6): 115–121
[4] 周乾聪, 陈乐, 罗亢, 刘梦洁, 宋永苹, 谢小兵, 曾勇军. 氮素穗肥运筹方式对杂交晚粳稻产量和品质的影响[J]. 作物杂志, 2021, (6): 129–133
[5] 高佳, 王姣, 王松, 刘红健, 康佳, 沈弘, 王海莉, 任少勇. 生物炭基肥对马铃薯田土壤脲酶活性和产量的影响[J]. 作物杂志, 2021, (6): 134–138
[6] 李心昊, 李俊, 万林, 刘丽欣, 刘君权, 马霓. 丘陵地区免耕条播对油菜生长、根系和产量的影响[J]. 作物杂志, 2021, (6): 139–144
[7] 郭明明, 王康君, 张广旭, 孙中伟, 李筠, 章跃树, 代丹丹, 陈凤, 樊继伟. 播期和行距互作对小麦籽粒产量和品质的调控[J]. 作物杂志, 2021, (6): 152–158
[8] 张盼盼, 张洪鹏, 郭亚宁. 2种植物生长调节剂对糜子光合特性和产量的影响[J]. 作物杂志, 2021, (6): 159–163
[9] 李阳, 杨晓龙, 汪本福, 张枝盛, 陈少愚, 李进兰, 程建平. 头季留茬高度对水稻再生季产量和稻米品质的影响[J]. 作物杂志, 2021, (6): 164–170
[10] 王欣, 王才. 不同播期和播种量对冬小麦生长特征和产量的影响[J]. 作物杂志, 2021, (6): 182–188
[11] 蔡丽君, 张敬涛, 刘婧琦, 盖志佳, 郭震华, 赵桂范. 长期免耕秸秆还田对寒地土壤有机碳及大豆产量的影响[J]. 作物杂志, 2021, (6): 189–192
[12] 刘卫星, 范小玉, 张枫叶, 贺群岭, 陈雷, 李可, 吴继华. 不同前茬和种衣剂用量对花生病虫害及产量的影响[J]. 作物杂志, 2021, (6): 199–204
[13] 李鑫, 金光辉, 王鹏程, 王紫雯. 马铃薯品种(系)淀粉与产量表现稳定性分析[J]. 作物杂志, 2021, (6): 51–57
[14] 高甜甜, 王德梅, 王艳杰, 杨玉双, 常旭虹, 赵广才. 不同春小麦品种对氮肥处理的响应[J]. 作物杂志, 2021, (6): 67–71
[15] 陈忠诚, 金喜军, 李贺, 周伟鑫, 强斌斌, 刘佳, 张玉先. 外源褪黑素对红小豆生长、光合荧光特性及产量构成因素的影响[J]. 作物杂志, 2021, (6): 88–94
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!