作物杂志,2021, 第6期: 78–87 doi: 10.16035/j.issn.1001-7283.2021.06.013

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

薰衣草芳樟醇合酶基因的克隆、表达及酶活性检测

龚林涛(), 苏秀娟(), 廖燕, 克热木汗·吾斯曼, 周迪, 尹松松   

  1. 新疆农业大学农学院/新疆农业大学农业生物技术重点实验室,830052,新疆乌鲁木齐
  • 收稿日期:2020-10-16 修回日期:2021-08-13 出版日期:2021-12-15 发布日期:2021-12-16
  • 通讯作者: 苏秀娟
  • 作者简介:龚林涛,研究方向为作物遗传育种,E-mail: gonglintao@yeah.net
  • 基金资助:
    国家自然科学基金地区科学基金(31760429);国家自然科学基金地区科学基金(31960452);新疆维吾尔自治区研究生科研创新项目(XJ2019G155)

Cloning, Expression and Enzyme Activity Detection of Linalool Synthase Gene in Lavender

Gong Lintao(), Su Xiujuan(), Liao Yan, Keremuhan·Wusiman , Zhou Di, Yin Songsong   

  1. College of Agriculture, Xinjiang Agricultural University/Key Laboratory of Agricultural Biotechnology, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2020-10-16 Revised:2021-08-13 Online:2021-12-15 Published:2021-12-16
  • Contact: Su Xiujuan

摘要:

从高油薰衣草品种“杂花”中克隆得到芳樟醇合酶基因LIS1LIS2,并对其进行了生物信息学和表达模式分析、原核表达和酶活性检测,以低油品种“法国蓝”为对照。结果表明,LIS1基因编码602个氨基酸,LIS2基因编码564个氨基酸。LIS1蛋白与阔叶薰衣草、一串红的芳樟醇合酶亲缘关系相近,LIS2蛋白与狭叶薰衣草、杂薰衣草的芳樟醇合酶亲缘关系相近。LIS1基因在“杂花”花器官半开期、盛开期和衰败期的表达量均高于“法国蓝”;LIS1基因在“杂花”花萼中的表达量最高,且仅在“法国蓝”雄蕊中少量表达。LIS2基因在“杂花”花器官不同组织和不同发育时期表达量均低于其在“法国蓝”中表达量,该基因在“杂花”花器官衰败期和“法国蓝”花器官半开期表达量最高,在2个品种花萼中高表达。LIS2基因在2个品种不同发育时期及组织中的表达量均明显高于LIS1基因。LIS1和LIS2重组蛋白具有单萜合酶活性,且均参与合成芳樟醇。

关键词: 薰衣草, 芳樟醇合酶, 克隆, 基因表达, 原核表达

Abstract:

In this study, the LIS1 and LIS2 genes of lavender were cloned from the oil-rich lavender variety ‘Zahua’, and bioinformatics analysis, expression pattern analysis and prokaryotic expression and enzyme activity detection with the control of ‘French bule’ were carried out. The results showed that LIS1 gene could encode 602 amino acids and LIS2 gene could encode 564 amino acids. LIS1 protein was closely related to the linalool synthase in broadleaf Lavandula latifolia and Salvia splendens. The LIS2 protein was closely related to the linalool synthase in Lavandula angustifolia and Lavandula x intermedia. The expression level of the LIS1 gene in half-opening stage, full blooming stage and senescence stage of flower organs of ‘Zahua’ were higher than that of ‘French blue’ at the same stages. The expression of the LIS1 gene was the highest in calyx of ‘Zahua’, and only slight expression in the stamen of ‘French blue’. The expression level of the LIS2 gene in different tissues and different development stages of ‘Zahua’ flower organs were lower than that of ‘French blue’ in the same tissues and stages. The LIS2 gene had the highest expression in ‘Zahua’ flower organs at senescence stage and in ‘French blue’ flower organs at the half-opening stage, and was strongly expressed in the calyx of the two varieties. The LIS2 gene expression was significantly higher than that of the LIS1 gene in different development stages and tissues of the two varieties flower organs. The recombinant proteins LIS1 and LIS2 had monoterpene synthase activity and were involved in the synthesis of linalool.

Key words: Lavender, Linalool synthase, Cloning, Gene expression, Prokaryotic expression

表1

试验所用引物序列及用途

引物
Primer
序列 (5'-3')
Sequence(5'-3')
用途
Application
F1 ATGTCTATCATTAGCATGCATGTGGG 基因克隆
R1 TTAGGGATATGGCTCGAACATCAGGGT 基因克隆
F2 ATGTCGATCAATATCAACATGCCTGC 基因克隆
R2 TCATGCGTACGGCTCGAACA 基因克隆
F3 AATAGGCCTGCAGCTTATAACCAT 荧光定量
R3 TGGCGCGGCTTTGAAG 荧光定量
F4 AATCGGCCGACTTCCTGAAT 荧光定量
R4 TCGGAAACAAAGTTGTGGATTG 荧光定量
β-Actin-F TGTGGATTGCCAAGGCAGAGT 荧光定量内参
β-Actin-R AATGAGCAGGCAGCAACAGCA 荧光定量内参
F5
CGGAATTCATGTCTATCATTAGCATGCA
TGTGGG
载体构建
R5
CCAAGCTTGGGATATGGCTCGAACATCA
GGGT
载体构建
F6
GGAATTCATATGATGTCGATCAATATCA
ACATGCCTGC
载体构建
R6 CGGAATTCTGCGTACGGCTCGAACA 载体构建

表2

生物信息学分析工具

网站
Website
网址
URL
预测内容
Predict the content
ProtParam http://web.expasy.org/protparam/ 蛋白理化参数
InterProScan
& Pfam
http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://pfam.xfam.org/search
蛋白功能结构域
DNAMAN 氨基酸序列比对
PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/ 蛋白二级结构
SWISS-Model http://swissmodel.expasy.org/ 蛋白三级结构
MEGA 5.0 同源树构建

图1

薰衣草花器官不同组织和不同发育时期示意图

图2

LIS基因扩增产物琼脂糖凝胶电泳

图3

LIS1和LIS2蛋白的功能结构域

图4

LIS1和LIS2蛋白二级结构预测

图5

LIS1和LIS2蛋白的三级结构预测

图6

LIS1和LIS2蛋白与其他物种芳樟醇合酶蛋白的多序列比对 第1个红色框线为RRX8W功能基团,第2个红色框线为DDXXD功能基团,第3个红色框线为DDXXTXXXE功能基团

图7

LIS1和LIS2蛋白的系统进化树分析 分支点的数值表示bootstrap验证中基于1000次重复的置信度

图8

LIS1基因表达量及显著性分析 不同字母表示在0.05水平上差异显著,下同

图9

LIS2基因表达量及显著性分析

图10

重组质粒pET-28a(+)-LIS1和pET-28a(+)-LIS2的双酶切鉴定 M:Marker 15 000;1:pET-28a(+)-LIS1质粒经EcoRⅠ、Hind Ⅲ双酶切;2:pET-28a(+)-LIS1线性质粒;3:pET-28a(+)-LIS2质粒经NdeⅠ、EcoRⅠ双酶切;4:pET-28a(+)-LIS2线性质粒

图11

LIS1和LIS2重组蛋白原核表达分析 M:蛋白ProteinRuler®Ⅰ,下同;1:pET-28a(+)未诱导;2:pET-28a(+)诱导后;3:pET-28a(+)-LIS2蛋白诱导前;4:pET-28a(+)-LIS2蛋白未诱导;5:pET-28a(+)-LIS2蛋白诱导后;6:pET-28a(+)未诱导;7:pET-28a(+)诱导后;8:pET-28a(+)-LIS1蛋白诱导前;9:pET-28a(+)-LIS1蛋白未诱导;10:pET-28a(+)-LIS1蛋白诱导后

图12

LIS1和LIS2重组蛋白可溶性鉴定 1:诱导前蛋白样品;2:未诱导蛋白样品;3:诱导后蛋白样品;4:诱导后可溶样品;5:诱导后不可溶样品

图13

LIS1、LIS2重组蛋白回收鉴定 1:包涵体溶解液;2:溶解蛋白流穿液;3:溶解蛋白洗脱液1;4:溶解蛋白洗脱液2

图14

LIS1重组蛋白添加底物输出产物GC-MS检测

图15

LIS2重组蛋白添加底物输出产物GC-MS检测 芳樟醇,单萜,1,6-octadien-3-ol, 3,7-dimethyl-,分子式:C10H18O

[1] 高婷婷, 谭勇, 魏雯, 等. 薰衣草的研究进展. 海峡两岸暨CSNR全国中药及天然药物资源学术研讨会, 2012:737-740.
[2] 王玉芹, 孙亚军, 施献儿. 薰衣草精油的化学成分与药理活性. 国外医药(植物药分册), 2004(1):5-8.
[3] Woronuk G, Demissie Z, Rheault M, et al. Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Medica, 2011, 77(1):7-15.
doi: 10.1055/s-0030-1250136 pmid: 20665367
[4] 樊荣辉, 黄敏玲, 钟淮钦, 等. 花香的生物合成、调控及基因工程研究进展. 中国细胞生物学报, 2011, 33(9):1028-1036.
[5] 陈尚钘, 赵玲华, 徐小军. 天然芳樟醇资源及其开发利用. 林业工程学报, 2013, 27(2):13-17.
[6] Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature. Science, 2001, 291(5511):2141-2144.
pmid: 11251117
[7] 刘静, 徐江涛. 薰衣草精油对小鼠镇静催眠作用的实验研究. 临床和实验医学杂志, 2012, 11(18):1440-1441.
[8] Linck V D M, Silva A L D, Micheli Figueiró, et al. Inhaled linalool-induced sedation in mice. Phytomedicine, 2009, 16(4):303-307.
doi: 10.1016/j.phymed.2008.08.001
[9] Pichersky E, Lewinsohn E, Croteau R. Purification and characterization of S-linalool synthase,an enzyme involved in the production of floral scent in Clarkia breweri. Archives of Biochemistry and Biophysics, 1995, 316(2):803-807.
pmid: 7864636
[10] Dudareva N, Cseke L, Blanc V M, et al. Evolution of floral scent in Clarkia:novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell, 1996, 8(7):1137-1148.
pmid: 8768373
[11] Mendoza-Poudereux I, Muñoz-Bertomeu J, Navarro A, et al. Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves. Metabolic Engineering, 2014, 23:136-144.
doi: 10.1016/j.ymben.2014.03.003 pmid: 24685653
[12] Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiology, 2001, 127(3):1256-1265.
pmid: 11706204
[13] He J, Fandino R A, Halitschke R, et al. An unbiased approach elucidates variation in (S)-(+)-linalool,a context-specific mediator of a tri-trophic interaction in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29):14651-14660.
[14] Tengxun Z, Guo Y H, Shi X J, et al. Overexpression of LiTPS2 from a cultivar of lily (LiliumSiberia’) enhances the monoterpenoids content in tobacco flowers. Plant Physiology and Biochemistry, 2020, 151:391-399.
doi: S0981-9428(20)30161-3 pmid: 32278293
[15] Zeng X L, Liu C, Zheng R R, et al. Emission and accumulation of monoterpene and the key terpene synthase (TPS) associated with monoterpene biosynthesis in Osmanthus fragrans Lour. Frontiers in Plant Science, 2015, 6:1232.
[16] 张雪荣. 薰衣草芳樟醇合酶的基因克隆、功能鉴定及转基因技术的研究. 呼和浩特:内蒙古农业大学, 2007.
[17] 赵钟鑫, 王健, 李琴, 等. 阔叶薰衣草芳樟醇合酶基因的克隆与表达载体构建. 植物研究, 2013, 33(3):308-316.
[18] 方柳. 莽山野柑特征香气相关候选基因克隆和功能鉴定. 武汉:华中农业大学, 2014.
[19] Huang X Z, Xiao Y T, KöLlner T G, et al. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. Plant Cell and Environment, 2018, 41(1):261-274.
doi: 10.1111/pce.v41.1
[20] Cseke L, Dudareva N, Pichersky E. Structure and evolution of linalool synthase. Molecular Biology and Evolution, 1998, 15(11):1491-1498.
pmid: 12572612
[21] Raguso R A, Pichersky E. New perspectives in pollination biology:floral fragrances. A day in the life of a linalool molecule:chemical communication in a plant-pollinator system. Part 1:linalool biosynthesis in flowering plants. Plant Species Biology, 1999, 14(2):95-120.
doi: 10.1046/j.1442-1984.1999.00014.x
[22] Yu F, Utsumi R. Diversity,regulation,and genetic manipulation of plant mono- and sesquiterpenoid biosynthesis. Cellular and Molecular Life Sciences, 2009, 66(18):3043-3052.
doi: 10.1007/s00018-009-0066-7
[23] Lin Y L, Lee Y R, Huang W K, et al. Characterization of S-(+)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genetics and Genomes, 2014, 10(1):75-86.
doi: 10.1007/s11295-013-0665-1
[24] Yue Y, Yu R, Fan Y. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta, 2014, 240(4):745-762.
doi: 10.1007/s00425-014-2127-x
[25] Gao F Z, Liu B F, Li M, et al. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. Journal of Experimental Botany, 2018, 69(18):4249-4265.
doi: 10.1093/jxb/ery224
[26] Jiang Y, Qian R, Zhang W, et al. Composition and biosynthesis of scent compounds from sterile flowers of an ornamental plant Clematis florida cv. ‘Kaiser’. Molecules, 2020, 25(7):1711.
doi: 10.3390/molecules25071711
[27] Fathi E, Majdi M, Dastan D, et al. The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes/phenylpropanoids in yarrow (Achillea millefolium). Plant Physiology and Biochemistry, 2019, 142:43-52.
doi: 10.1016/j.plaphy.2019.06.036
[28] Biswas K K, Foster A J, Aung T, et al. Essential oil production:relationship with abundance of glandular trichomes in aerial surface of plants. Acta Physiologiae Plantarum, 2009, 31(1):13-19.
doi: 10.1007/s11738-008-0214-y
[29] Chuang L, Wen C H, Lee Y R, et al. Identification,functional characterization,and seasonal expression patterns of five sesquiterpene synthases in Liquidambar formosana. Journal of Natural Products, 2018, 81(5):1162-1172.
doi: 10.1021/acs.jnatprod.7b00773 pmid: 29746128
[30] Magnard J L, Aurélie R B, Bettini F, et al. Linalool and linalool nerolidol synthases in roses,several genes for little scent. Plant Physiology and Biochemistry, 2018, 127:74-87.
doi: 10.1016/j.plaphy.2018.03.009
[31] Hattan J, Shindo K, Ito T, et al. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars. Planta, 2016, 243(4):959-972.
doi: 10.1007/s00425-015-2454-6
[32] Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution, 1985, 2(1):13-34.
pmid: 3916708
[33] 刘琬菁, 吕海舟, 李滢, 等. 植物萜类合酶研究新进展. 植物生理学报, 2017, 53(7):1139-1149.
[1] 宋坤锋, 郝风声, 姚欣, 王静, 刘卫群. 烟草Nt14-3-3-like C基因的克隆与功能分析[J]. 作物杂志, 2021, (5): 6–13
[2] 王通, 赵孝东, 甄萍萍, 陈静, 陈明娜, 陈娜, 潘丽娟, 王冕, 许静, 禹山林, 迟晓元, 张建成. 花生TCP转录因子的全基因组鉴定及组织表达特性分析[J]. 作物杂志, 2021, (2): 35–44
[3] 刘晓丽, 韩利涛, 魏楠, 申飞, 蔡一林. 玉米ZmGS5基因克隆、分子特性分析及对拟南芥的遗传转化[J]. 作物杂志, 2021, (1): 16–25
[4] 卢晓玲, 何铭, 张凯旋, 廖志勇, 周美亮. 苦荞鼠李糖基转移酶FtF3GT1基因的克隆与转化毛状根研究[J]. 作物杂志, 2020, (5): 33–40
[5] 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 53–61
[6] 李雪妹,刘畅,刘倩雯,张煜笛,李雪梅. PEG预处理对水分胁迫下水稻叶片抗氧化酶同工酶及其表达的影响[J]. 作物杂志, 2016, (6): 107–111
[7] 韩赞平,陈彦惠,郭书磊,祖小峰,王顺喜,赵西拥. 玉米抗逆基因ZmqLTG3-1的克隆及功能分析[J]. 作物杂志, 2016, (4): 47–55
[8] 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 75–79
[9] 袁红梅,郭文栋,赵丽娟,于莹,吴建忠,程莉莉,赵东升,康庆华,黄文功,姚玉波,宋喜霞,姜卫东,刘岩,马廷芬,吴广文,关凤芝. 亚麻糖基转移酶基因LuUGT72E1的克隆与表达分析[J]. 作物杂志, 2016, (4): 62–67
[10] 汪晓东, 陈洋, 于月华, 等. 大豆GmNF-YA3基因结构及原核表达分析[J]. 作物杂志, 2015, (4): 47–50
[11] 吴鹏, 郭茜茜, 武涛, 等. 黄瓜ABC转运蛋白基因(abca19)的克隆及其对农药霜霉威胁迫的响应[J]. 作物杂志, 2015, (3): 45–51
[12] 王红, 杨镇, 肖军, 等. 两种植物内生真菌的醇提取物对水稻根部基因表达谱的分析[J]. 作物杂志, 2014, (2): 48–52
[13] 王慧, 杨小艳, 翁建峰, 等. 抗玉米螟基因GrylA.301原核表达和玉米遗传转化[J]. 作物杂志, 2014, (2): 34–38
[14] 路喆, 王朴, 王自健, 等. 薰衣草新品种新薰一号的选育及特征特性[J]. 作物杂志, 2014, (1): 153–153
[15] 孟繁君, 陈明, 徐长营, 等. 玉米C2H2型锌指蛋白基因ZFP225的鉴定、生物信息学分析与克隆[J]. 作物杂志, 2014, (1): 49–53
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!