作物杂志,2022, 第4期: 214–220 doi: 10.16035/j.issn.1001-7283.2022.04.030

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响

庞星月(), 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓()   

  1. 中国农业科学院油料作物研究所/农业农村部油料作物生物学与遗传育种重点实验室,430062,湖北武汉
  • 收稿日期:2021-04-22 修回日期:2021-07-10 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 马霓
  • 作者简介:庞星月,主要从事作物栽培与生理研究,E-mail: pangxingyue58@qq.com
  • 基金资助:
    农业农村部油料作物生物学与遗传育种重点实验室开放课题基金(KF2020006);国家自然科学基金(31971855);中国农业科学院科技创新工程(CAASASTIP-2016-OCRI)

Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress

Pang Xingyue(), Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2021-04-22 Revised:2021-07-10 Online:2022-08-15 Published:2022-08-22
  • Contact: Ma Ni

摘要:

干旱胁迫是油菜种子萌发和生长发育的主要限制因子之一。以甘蓝型油菜品种Q2(抗旱型)和秦优8号(干旱敏感型)为试验材料,研究干旱对油菜种子萌发的影响,探讨外源生长调节物质独脚金内酯(SLs)和纳米材料(n-K2MoO4)对干旱胁迫下油菜种子萌发的生理调控作用。结果表明,干旱胁迫显著抑制种子萌发,SLs和n-K2MoO4均可显著提高发芽率,增加幼苗干重和子叶叶绿素含量,提高超氧化物歧化酶、过氧化物酶活性及可溶性糖、脯氨酸含量,降低丙二醛含量。0.10µmol/L GR24+0.24mmol/L K2MoO4对干旱胁迫下种子萌发和氧化损伤的缓解效应较好。外源SLs和n-K2MoO4通过提高油菜种子萌发期的保护酶活性和渗透调节物质含量来提高抗旱性。本研究表明植物激素和纳米材料在农业生产中具有应用价值。

关键词: 独脚金内酯, 纳米材料, 干旱胁迫, 种子萌发, 生理机制

Abstract:

Drought stress is one of the major abiotic constraints affecting rapeseed (Brassica napus L.) germination and growth. Using Q2 (drought-resistant) and Qinyou 8 (sensitive) as materials, the effects of drought on germination and the physiological mechanmism of seed germination under drought treated by exogenous growth regulators strigolactones (SLs) and nanomaterials (n-K2MoO4) were explored. The findings demonstrated that drought stress significantly inhibited seed germination, SLs and n-K2MoO4 significantly increased germination rate, seedling dry weight, and cotyledon chlorophyll content, as well as superoxide dismutase and peroxidase activities and soluble sugar, proline, and decreased malondialdehyde contents. In comparison to other treatments, 0.10μmol/L GR24 with 0.24mmol/L n-K2MoO4 exhibited stronger mitigation effects on seed germination and oxidative damage. According to this study, exogenous SLs and n-K2MoO4 could increase the activities of protective enzymes and the levels of osmotic regulators during rapeseed germination, which improved the ability to withstand drought. The results indicate plant hormones and nanomaterials might be used in agriculture.

Key words: Strigolactones, Nanomaterial, Drought stress, Seed germination, Physiological mechanism

表1

干旱和SLs、n-K2MoO4对干旱胁迫下油菜种子萌发性状的影响

品种
Variety
处理
Treatment
GR (%) GI MT VI 出苗率
Rate of emergence (%)
Q2 CK1 100.00±0.00a 58.82±1.15a 1.10±0.09e 515.82±35.92b 97.78±3.85a
CK2 98.89±0.96a 30.88±0.70f 3.30±0.11b 51.46±7.43f 35.56±10.18d
T1 100.00±0.00a 53.18±1.60bc 1.48±0.13de 686.09±13.22a 73.33±2.89b
T2 100.00±0.00a 36.80±0.19e 2.73±0.05c 257.13±10.51d 62.22±11.10bc
T3 100.00±0.00a 51.25±1.25cd 1.61±0.11d 189.78±4.88e 76.11±10.72b
秦优8号 CK1 100.00±0.00a 55.40±2.92ab 1.32±0.21de 454.05±43.46c 96.67±4.41a
Qinyou 8 CK2 40.67±16.17b 8.06±1.84g 6.64±0.85a 16.55±5.95f 16.67±6.67e
T1 98.89±1.93a 39.77±0.49e 2.58±0.05c 456.9±45.99c 34.44±2.55d
T2 98.61±0.00a 31.38±3.98f 3.04±0.13bc 147.65±1.84e 44.44±12.95 d
T3 98.89±1.93a 49.39±1.40d 1.72±0.17d 186.54±57.76e 49.44±13.98cd

表2

干旱和SLs、n-K2MoO4对干旱胁迫下油菜幼苗农艺性状的影响

品种
Variety
处理
Treatment
干重(mg/株)
Dry weight (mg/plant)
主根长(cm/株)
Main root length (cm/plant)
侧根长(cm/株)
Lateral root length (cm/plant)
侧根数
Root hair number
Q2 CK1 30.90±1.59cd 7.40±0.72c 7.09±1.41a 8.00±1.31b
CK2 25.47±5.18ef 1.40±0.18g 1.12±0.40ef 2.00±0.36c
T1 37.46±2.75a 12.24±0.43a 3.17±0.85bc 10.00±2.31a
T2 36.93±1.53a 6.15±0.47d 2.12±1.49cde 3.00±1.22c
T3 35.57±1.40ab 2.96±0.07ef 1.27±0.21def 4.00±0.58c
秦优8号 CK1 26.97±0.90de 7.08±0.50cd 4.19±0.26b 7.00±1.67b
Qinyou 8 CK2 21.40±1.82f 2.05±0.41fg 0.32±0.07f 1.00±0.23c
T1 27.30±1.70de 10.87±0.77b 3.59±0.76bc 11.00±0.67a
T2 32.33±1.60bc 3.63±0.45e 2.40±0.40cd 3.00±0.50c
T3 31.10±3.30cd 3.22±1.37e 1.23±0.35def 3.00±0.58c

表3

干旱和SLs、n-K2MoO4对干旱胁迫下油菜叶片叶绿素含量的影响

处理
Treatment
Chl a Chl b Chl a+b Chl a/Chl b
Q2 秦优8号
Qinyou 8
Q2 秦优8号
Qinyou 8
Q2 秦优8号
Qinyou 8
Q2 秦优8号
Qinyou 8
CK1 8.93±0.32bc 6.78±0.66e 4.40±0.19abc 3.97±0.36bce 13.33±0.49bc 10.75±1.02d 2.03±0.04bc 1.71±0.01d
CK2 7.22±0.31e 5.47±0.37f 3.84±0.19cef 3.31±0.24f 11.06±0.37d 8.78±0.60e 1.88±0.12d 1.65±0.03e
T1 8.28±0.12cd 6.89±0.60e 4.27±0.19abc 4.10±0.29bce 12.55±0.31c 10.98±0.39d 1.94±0.06c 1.69±0.27d
T2 10.04±0.59a 7.96±0.29d 4.73±0.20a 4.77±0.88a 14.77±0.79a 12.72±0.59c 2.12±0.05a 1.71±0.35c
T3 9.45±0.42ab 5.93±0.32f 4.53±0.14ab 3.58±0.08ef 13.98±0.57ab 9.52±0.40e 2.08±0.03ab 1.65±0.06e

图1

干旱和SLs、n-K2MoO4处理对油菜叶片SOD和POD活性的影响 不同字母表示处理间差异达5%显著水平,下同

图2

干旱和SLs、n-K2MoO4处理对油菜叶片活性氧含量的影响

图3

干旱和SLs、n-K2MoO4处理对油菜叶片SS和Pro含量的影响

表4

种子萌发相关指标与幼苗生理指标的相关系数

指标Index GR GI VI MT DW LRL MRL Chl SOD POD MDA H2O2 O-2· Pro SS
GR 1
GI 0.731**
VI 0.462* 0.683**
MT -0.836** -0.965** -0.626**
DW 0.591** 0.428* 0.455* -0.514**
LRL 0.067 0.438* 0.650** -0.303 -0.066
MRL 0.211 0.357 0.878** -0.330 0.227 0.561**
Chl 0.543** 0.334 0.339 -0.389 0.727** 0.115 0.183
SOD 0.201 -0.027 -0.124 -0.064 0.470* -0.585** -0.177 0.108
POD 0.287 0.154 -0.056 -0.198 0.519** -0.489** -0.154 0.080 0.744**
MDA -0.817** -0.925** -0.530** 0.939** -0.511** -0.361 -0.169 -0.506** -0.089 -0.169
H2O2 -0.629** -0.862** -0.720** 0.844** -0.478** -0.658** -0.417* -0.486** 0.126 -0.027 0.883**
O-2· -0.889** -0.890** -0.645** 0.935** -0.672** -0.322 -0.358 -0.670** -0.105 -0.232 0.927** 0.852**
Pro 0.308 0.062 -0.136 -0.146 0.576** -0.596** -0.234 0.320 0.909** 0.789** -0.188 0.081 -0.260
SS 0.181 -0.130 -0.185 0.040 0.453* -0.647** -0.165 0.280 0.887** 0.562** -0.023 0.195 -0.115 0.891** 1
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40(5):613-617.
[2] 刘吉磊. 长江中下游地区油菜生产能力遥感估算及增产潜力分析. 北京: 中国科学院大学, 2015.
[3] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34(1):114-122.
[4] 张静. 干旱对油菜萌发出苗与生长的影响及抗旱机制研究. 武汉:华中农业大学, 2015.
[5] Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435(7043):824-827.
doi: 10.1038/nature03608
[6] Mostofa M G, Li W, Nguyen K H, et al. Strigolactones in plant adaptation to abiotic stresses:An emerging avenue of plant research. Plant Cell and Environment, 2018, 41(10):2227-2243.
doi: 10.1111/pce.13364
[7] Van H C, Leyva M, Osakabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2):851-865.
[8] Ma N, Hu C, Wan L, et al. Strigolactones improve plant growth,photosynthesis,and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 2017, 8:1671.
doi: 10.3389/fpls.2017.01671
[9] 程鸿燕. 独脚金内酯对干旱胁迫下谷子生理生化及转录组响应模式的影响. 太原:山西农业大学, 2019.
[10] 万林, 李张开, 李素, 等. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42(3):461-471.
[11] 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响. 农业资源与环境学报, 2020, 37(5):736-743.
[12] 路轲. 喷施不同纳米材料对水稻幼苗生长和磷吸收的影响. 北京: 中国农业科学院, 2020.
[13] 姜余梅, 刘强, 赵怡情, 等. 碳纳米管对水稻种子萌发和根系生长的影响. 湖北农业科学, 2014(5):1010-1012.
[14] Xiong J L, Li J, Wang H C, et al. Fullerol improves seed germination,biomass accumulation,photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiology and Biochemistry, 2018, 129:130-140.
doi: 10.1016/j.plaphy.2018.05.026
[15] 张坤. 钼酸锌纳米片的制备及其非线性光学特性研究. 哈尔滨:哈尔滨工程大学, 2019.
[16] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[17] 尹美强, 王栋, 王金荣, 等. 外源一氧化氮对盐胁迫下高粱种子萌发及淀粉转化的影响. 中国农业科学, 2019, 52(22):4119-4128.
[18] Rivero R M, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiology, 2009, 150(3):1530-1540.
doi: 10.1104/pp.109.139378 pmid: 19411371
[19] Khan M N, Zhang J, Luo T, et al. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification:Antioxidant defense system,osmotic adjustment,stomatal traits and chloroplast ultrastructure perseveration. Industrial Crops and Products, 2019, 140(15):111597.
doi: 10.1016/j.indcrop.2019.111597
[20] 何久军, 赵淑玲, 王昱, 等. PEG-6000胁迫对三种类型鲜食玉米种子萌发的影响. 种子, 2021, 40(2):96-101,105.
[21] 胡承伟, 张学昆, 邹锡玲, 等. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35(1):48-53.
[22] 杨春杰, 张学昆, 邹崇顺, 等. PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响. 中国油料作物学报, 2007(4):425-430.
[23] Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase,peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 2003, 49(1):69-76.
doi: 10.1016/S0098-8472(02)00058-8
[24] Nath M, Bhatt D, Prasad R, et al. Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and piriformospora indica interaction under stress condition. Frontiers in Plant Science, 2016, 7:1574.
[25] Apel K, Hirt H. Reactive oxygen species:Metabolism,oxidative stress,and signal transduction. Annual Review of Plant Biology, 2004, 55:373-99.
doi: 10.1146/annurev.arplant.55.031903.141701
[26] 肖爽, 韩雨辰, 号宇然, 等. 聚乙二醇引发对盐胁迫下棉种萌发及生理特性的影响. 核农学报, 2021, 35(1):202-210.
doi: 10.11869/j.issn.100-8551.2021.01.0202
[27] NiuY F, Chai R S, Jin G L, et al. Responses of root architecture development to low phosphorus availability:a review. Annals of Botany, 2013, 112(2):391-408.
doi: 10.1093/aob/mcs285
[28] 吴佳妮, 杨天志, 连加, 等. 聚苯乙烯纳米塑:(PSNPs)对大豆(Glycinemax)种子发芽和幼苗生长的影响. 环境科学学报, 2020, 40(12):4581-4589.
[29] Sun H, Tao J, Liu S, et al. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. Journal Experimental Botany, 2014, 65(22):6735-6746.
doi: 10.1093/jxb/eru029
[30] 陆长梅, 张超英, 温俊强, 等. 纳米材料促进大豆萌芽、生长的影响及其机理研究. 大豆科学, 2002(3):168-171,241.
[31] 李畅, 苏家乐, 刘晓青, 等. 干旱胁迫对鹿角杜鹃种子萌发和幼苗生理特性的影响. 西北植物学报, 2015, 35(7):1421-1427.
[32] Mojde S, Zeinolabedin T S, Yahya E, et al. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiology and Biochemistry, 2017, 119:59-69.
doi: 10.1016/j.plaphy.2017.08.015
[33] 邹京南, 曹亮, 王梦雪, 等. 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响. 生态学杂志, 2019, 38(9):2709-2718.
[1] 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143–148
[2] 谭秦亮, 程琴, 潘成列, 朱鹏锦, 李佳慧, 宋奇琦, 农泽梅, 周全光, 庞新华, 吕平. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022, (3): 161–167
[3] 杨奥军, 常巧玲, 王鹏, 王芳, 高妍婷, 周广阔, 宋小佳, 韦恩成. 外源5-ALA对干旱胁迫下玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2022, (3): 194–199
[4] 卢军, 钱宇, 杨柳, 王勇, 陈玉蓝. 贮藏时间对烟草品种红花大金元种子萌发和生理特性的影响[J]. 作物杂志, 2022, (2): 211–214
[5] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[6] 李安, 舒健虹, 刘晓霞, 蒙正兵, 王小利, 赵德刚. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响[J]. 作物杂志, 2021, (6): 217–223
[7] 陈芳, 谷晓平, 于飞, 胡家敏, 左晋, 胡欣欣, 刘宇鹏, 胡锋. 贵州辣椒光合生理特性对干旱胁迫的响应[J]. 作物杂志, 2021, (5): 160–165
[8] 吕伟, 任果香, 韩俊梅, 文飞, 王若鹏, 刘文萍. 干旱胁迫对芝麻幼苗生理生化指标的影响[J]. 作物杂志, 2021, (5): 172–175
[9] 裴志超, 周继华, 徐向东, 兰宏亮, 王俊英, 郎书文, 张伟强. 干旱处理对不同玉米品种叶片光合速率和抗氧化特性及产量的影响[J]. 作物杂志, 2021, (5): 95–100
[10] 闫锋, 李清泉, 董扬, 季生栋, 韩业辉, 于运凯, 王立达, 赵锁. 60Co-γ辐射对糜子种子萌发及幼苗生长的影响[J]. 作物杂志, 2021, (4): 202–205
[11] 宋瑞娇, 冯彩军, 齐军仓. 富氢水对干旱胁迫下大麦种子萌发及幼苗生物量分配的影响[J]. 作物杂志, 2021, (4): 206–211
[12] 申洁, 王玉国, 郭平毅, 原向阳. 腐植酸对干旱胁迫下谷子幼苗叶片抗坏血酸-谷胱甘肽循环的影响[J]. 作物杂志, 2021, (2): 173–177
[13] 韩多红, 王恩军, 张勇, 王红霞, 王艳, 王富. 干旱胁迫下外源亚精胺、甜菜碱对菘蓝种子萌发和幼苗生理特性的影响[J]. 作物杂志, 2021, (1): 118–123
[14] 邓婉月, 冷秋彦, 杨在君, 余燕, 吴一超. 干旱胁迫对盆栽“川丹参1号”生理指标及主要活性成分含量的影响[J]. 作物杂志, 2021, (1): 74–81
[15] 杨娟, 姜阳明, 周芳, 张军, 罗海登, 田山君. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021, (1): 82–89
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!