作物杂志,2023, 第4期: 7784 doi: 10.16035/j.issn.1001-7283.2023.04.012
赵鹏鹏(), 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏()
Zhao Pengpeng(), Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong()
摘要:
CIPK是植物钙感受器钙调磷酸酶B类似蛋白特定靶向的一类丝氨酸/苏氨酸蛋白激酶,在钙离子信号转运中起到重要作用。为探究GzCIPK7-5B基因在小麦中的功能,利用RT-PCR方法从小麦品种贵紫麦1号中克隆得到GzCIPK7-5B基因,进行生物信息学分析。用RT-PCR检测GzCIPK7-5B基因在贵紫麦1号不同组织(根、茎、叶、籽粒)中的表达情况。运用qRT-PCR检测GzCIPK7-5B在籽粒3个时期(花后10、25、35d)的表达水平。结果表明,GzCIPK7-5B基因的开放阅读框为1296bp,编码431个氨基酸,蛋白含有丝氨酸―苏氨酸蛋白激酶家族保守结构域,具有CIPKs家族基因的特征。其编码的蛋白含有29个磷酸化位点,无跨膜结构,是一种无信号肽的不稳定亲水性核蛋白。GzCIPK7-5B基因与野生二粒小麦的TdCIPK7-5B序列相似度最高,蛋白序列同源性为100%,在根、茎、叶和籽粒中均有表达,在贵紫麦1号籽粒花青素合成3个重要时期(花后10、25、35d),花后25和35d的表达水平显著高于花后10d。
[1] | 马瑞, 李世贵, 刘维刚, 等. 植物CBL-CIPK信号系统的功能及其响应非生物胁迫作用机制研究进展. 植物生理学报, 2021, 57(3):521-530. |
[2] |
Wang Y, Li T, John S J, et al. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiology Biochemistry, 2018, 123:103-113.
doi: 10.1016/j.plaphy.2017.11.019 |
[3] |
许静, 高景阳, 李程成, 等. 过表达ZmCIPKHT基因增强植物耐热性. 作物学报, 2022, 48(4):851-859.
doi: 10.3724/SP.J.1006.2022.13013 |
[4] |
Wang R K, Li L L, Cao Z H, et al. Molecular clonging and fuctional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Molecular Biology, 2012, 79(1/2):123-135.
doi: 10.1007/s11103-012-9899-9 |
[5] | Zhang Y M, Ling H J J, Dong W, et al. SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance. Plant Molecular Reporter, 2017, 35(6):634-646. |
[6] |
Song S J, Feng Q N, Li Chun L, et al. A Tonoplast-associated calcium-signaliling module dampens ABA signaling during stomatal movement. Plant Physiology, 2018, 177(4):1666-1678.
doi: 10.1104/pp.18.00377 |
[7] |
Sanya S K, Kanwar P, Yadav A K, et al. Arabidopsis CBL interacting protein kinase 3 interavts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses. Plant Science, 2017, 254:48-59.
doi: 10.1016/j.plantsci.2016.11.004 |
[8] |
Zhao J F, Sun Z F, Zheng J, et al. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Molecular Biology, 2009, 69(6):661-674.
doi: 10.1007/s11103-008-9445-y pmid: 19105030 |
[9] | Mahajaan S, Sopory S K, Tuteja N. Cloning and characterization of CBL-CIPK signaling components fromalegume(Pisum sativum). FEBS Journal, 2006, 27, 3(5):907-925. |
[10] |
Huang C L, Ding S, Zhang H, et al. CIPK 7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Science, 2011, 181(1):57-64.
doi: 10.1016/j.plantsci.2011.03.011 |
[11] | Qiu Q S, Gou Y, Detrich M, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12):8436-8441. |
[12] |
Xing Y, Huang Y, Xiong L Z. Characterization of stress-responsive CIPK genes in rice for stress toleranceimprovement. Plant Physiology, 2007, 144(3):1416-1428.
doi: 10.1104/pp.107.101295 |
[13] | 晋霞.小麦盐胁迫响应基因TaCIPK25的功能研究. 武汉:华中科技大学, 2017. |
[14] |
Tian Q Y, Zhang X X, Yang A, et al. CIPK 23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. Plant Science, 2016, 246:70-79.
doi: S0168-9452(16)30010-3 pmid: 26993237 |
[15] |
Zhang X, Li Z C, Li X J, et al. CBL3 and CIPK 18 are required for the function of NHX5 and NHX6 in mediating Li+ homeostasis in Arabidopsis. Journal of Plant Physiology, 2020, 255:153295.
doi: 10.1016/j.jplph.2020.153295 |
[16] |
Peng H, Yang T, Whitaker BD, et al. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP glucosyl- transferase involved in fruit anthocyanin biosynthesis. BMC Plant Biology, 2016, 16(1):197.
doi: 10.1186/s12870-016-0888-z pmid: 27609111 |
[17] | Zong Y, Xi X, Li S, et al. Allelic variation and transcriptional isoforms of wheat TaMYC1gene regulating anthocyanin synthesis in pericarp. Plant Science, 2017, 8:1645. |
[18] |
Yu Y H, Xia X L, Yin W L, et al. Comparative genomic analysis of CIPK gene family in Arbidopsis and Populus. Plant Growth Regulation, 2007, 52(2):101-110.
doi: 10.1007/s10725-007-9165-3 |
[19] |
Li L B, Zhang Y R, Liu K C, et al. Identtification and bioinfprmatics analysis of SnRK2 and CIPKfamily genes in Sorghum. Agricultural Sciences in China, 2010, 9(1):19-30.
doi: 10.1016/S1671-2927(09)60063-8 |
[20] | Cui X Y, Du Y T, Fu T F, et al. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. British Medical Council Plant Biology, 2018, 18(1):93. |
[21] | 余爱丽, 赵晋锋, 王高鸿, 等. 两个谷子CIPK基因在非生物逆境胁迫下的表达分析. 作物学报, 2016, 42(2):295-302. |
[22] |
冯志娟, 徐盛春, 刘娜, 等. CIPK基因对逆境胁迫及激素的响应特征. 植物遗传资源学报, 2017, 18(6):1168-1178.
doi: 10.13430/j.cnki.jpgr.2017.06.019 |
[23] | 李亚坤, 陈乃钰, 杨晓雪, 等. 紫花苜蓿MsCIPK8基因的克隆与表达分析. 植物遗传资源学报, 2020, 21(2):491-499. |
[24] |
Xu J, Li H D, Chen L Q, et al. A prontein kinase, interacting with two calcineurin B-like proteins, regulates K+transporter AKT1 in Arabidopsisi. Cell, 2006, 125:1347-1360.
doi: 10.1016/j.cell.2006.06.011 |
[25] | Lee S C, Lan W Z, Kim B G, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences, 2007, 104(40):15959-15964. |
[26] |
Ho C H, Lin S H, Hu H C, et al. CHL1functions as a nitrate sensor in plants. Cell, 2009, 138:1184-1194.
doi: 10.1016/j.cell.2009.07.004 |
[27] |
毕惠惠, 贺亚伟, 毛伟伟, 等. 小麦TaCIPK8基因的表达分析及其与TaCBLs的互作. 植物遗传资源学报, 2018, 19(2):296-304.
doi: DOI:10.13430/j.cnki.jpgr.2018.02.013 |
[28] | 时丕彪, 洪立洲, 王军, 等. 藜麦CqCIPK7基因的克隆与表达分析. 江苏农业学报, 2020, 36(4):1068-1072. |
[1] | 张明伟, 丁锦峰, 朱新开, 郭文善. 稻茬过晚播小麦高产密度和氮肥调控效应分析[J]. 作物杂志, 2023, (4): 126135 |
[2] | 宋晓, 张珂珂, 岳克, 黄晨晨, 黄绍敏, 孙建国, 郭腾飞, 郭斗斗, 张水清, 裴敏楠. 不同氮效率品种小麦根际土壤酶活性和细菌群落的差异[J]. 作物杂志, 2023, (4): 188194 |
[3] | 傅晓艺, 王红光, 刘志连, 李东晓, 何明琦, 李瑞奇. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选[J]. 作物杂志, 2023, (4): 224229 |
[4] | 刘颖, 顾昀怿, 张伟杨, 杨建昌. 水分与氮素及其互作调控小麦产量和水氮利用效率研究进展[J]. 作物杂志, 2023, (4): 715 |
[5] | 李宏生, 李绍祥, 杨忠慧, 杨家李, 刘琨, 熊世安, 李富乾, 郭辉, 杨木军. 温光敏两系杂交小麦杂交种纯度的表型和标记检测比较[J]. 作物杂志, 2023, (4): 7176 |
[6] | 李浩然, 李瑞奇, 李雁鸣. 海河平原小麦行距形式变化及其影响因素研究综述[J]. 作物杂志, 2023, (3): 1219 |
[7] | 李俊志, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才. 施氮水平对不同强筋小麦品种产量和品质的影响[J]. 作物杂志, 2023, (3): 148153 |
[8] | 罗四维, 石秀楠, 贾永红, 张金汕, 王凯, 李丹丹, 王润琪, 董艳雪, 石书兵. 滴灌的毛管间距和滴头间距对匀播冬小麦光合、干物质积累和产量形成的影响[J]. 作物杂志, 2023, (3): 230237 |
[9] | 邱凯华, 方淑梅, 梁喜龙. 稻瘟病菌类SRRM1转录因子的功能分析[J]. 作物杂志, 2023, (3): 246253 |
[10] | 张海斌, 吴晓华, 于美玲, 王小兵, 叶君, 崔思宇, 李元清, 王占贤, 张宏旭, 薛伟, 李岩, 崔国惠, 赵轩微, 刘娟. 内蒙古区域试验小麦品种(系)籽粒产量AMMI模型分析[J]. 作物杂志, 2023, (3): 2734 |
[11] | 李晶, 李鹏程, 贺永斌, 邢雅玲, 孟凡华, 周谦, 南铭. 16份俄罗斯冬小麦品种资源主要性状多元分析和综合评价[J]. 作物杂志, 2023, (3): 5865 |
[12] | 高振贤, 曹巧, 单子龙, 傅晓艺, 韩然, 何明琦, 史占良, 郑树松. 倒春寒对323份冬小麦种质资源影响初探[J]. 作物杂志, 2023, (3): 8693 |
[13] | 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同筋型小麦品种产量及农艺性状的调控效应[J]. 作物杂志, 2023, (2): 131137 |
[14] | 王玉娇, 常旭虹, 王德梅, 王艳杰, 杨玉双, 石书兵, 赵广才. 播种方式对不同品种小麦产量和品质的影响[J]. 作物杂志, 2023, (1): 122128 |
[15] | 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 施氮量对北部冬麦区种植弱筋小麦产量与品质的影响[J]. 作物杂志, 2023, (1): 163169 |
|