作物杂志,2023, 第4期: 77–84 doi: 10.16035/j.issn.1001-7283.2023.04.012

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

小麦GzCIPK7-5B基因的生物信息学及表达分析

赵鹏鹏(), 李鲁华, 任明见, 安畅, 洪鼎立, 李欣, 徐如宏()   

  1. 贵州大学农学院/国家小麦改良中心贵州分中心,550025,贵州贵阳
  • 收稿日期:2022-03-04 修回日期:2022-05-06 出版日期:2023-08-15 发布日期:2023-08-15
  • 通讯作者: 徐如宏,主要从事小麦遗传育种研究工作,E-mail:xrhgz@163.com
  • 作者简介:赵鹏鹏,研究方向为作物遗传育种,E-mail:920848894@qq.com
  • 基金资助:
    贵州省科技支撑计划(黔科合支撑[2021]一般272(黔科合支撑[2021]一般272);贵州省科技厅成果推广计划(黔科合成果[2019]4246号);贵州省科技计划(黔科合基础[2020]1Z018号);国家自然科学基金(31660390)

Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat

Zhao Pengpeng(), Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong()   

  1. College of Agriculture,Guizhou University/Guizhou Branch of National Wheat Improvement Center, Guiyang 550025,Guizhou, China
  • Received:2022-03-04 Revised:2022-05-06 Online:2023-08-15 Published:2023-08-15

摘要:

CIPK是植物钙感受器钙调磷酸酶B类似蛋白特定靶向的一类丝氨酸/苏氨酸蛋白激酶,在钙离子信号转运中起到重要作用。为探究GzCIPK7-5B基因在小麦中的功能,利用RT-PCR方法从小麦品种贵紫麦1号中克隆得到GzCIPK7-5B基因,进行生物信息学分析。用RT-PCR检测GzCIPK7-5B基因在贵紫麦1号不同组织(根、茎、叶、籽粒)中的表达情况。运用qRT-PCR检测GzCIPK7-5B在籽粒3个时期(花后10、25、35d)的表达水平。结果表明,GzCIPK7-5B基因的开放阅读框为1296bp,编码431个氨基酸,蛋白含有丝氨酸―苏氨酸蛋白激酶家族保守结构域,具有CIPKs家族基因的特征。其编码的蛋白含有29个磷酸化位点,无跨膜结构,是一种无信号肽的不稳定亲水性核蛋白。GzCIPK7-5B基因与野生二粒小麦的TdCIPK7-5B序列相似度最高,蛋白序列同源性为100%,在根、茎、叶和籽粒中均有表达,在贵紫麦1号籽粒花青素合成3个重要时期(花后10、25、35d),花后25和35d的表达水平显著高于花后10d。

关键词: 小麦, GzCIPK7-5B基因, RT-PCR克隆, 生物信息学, 基因表达

Abstract:

CIPK is a kind of serine/threonine protein kinase specifically targeting calcineurin B similar protein in plant calcium receptors,which plays an important role in calcium ion signal transduction.To explore the function of GzCIPK7-5B gene in wheat,the GzCIPK7-5B gene from wheat variety‘Guizimai 1’was cloned by RT-PCR and analyzed by bioinformatics.RT-PCR was used to detect the expression of GzCIPK7-5B gene in different tissues (roots, stems, leaves and grains) of ‘Guizimai 1’.qRT-PCR was used to detect the expression levels of GzCIPK7-5B at three stages (10, 25, 35days post anthesis) of grain.The results showed that the length of GzCIPK7-5B open reading frame was 1296bp,encoding 431 amino acids. The protein contained a conserved domain of serine-threonine protein kinase family and had the characteristics of CIPKs family genes. The encoded protein contained 29 phosphorylation sites and had no transmembrane structure. It was an unstable hydrophilic nuclear protein without signal peptide. The sequence similarity of GzCIPK7-5B gene and TdCIPK7-5B of wild two-grain wheat was the highest, and the protein sequence homology was 100%.GzCIPK7-5B gene was expressed in roots, stems,leaves and grains. In the three important periods of anthocyanin synthesis of ‘Guizimai 1’,the expression levels of 25 and 35days post anthesis were significantly higher than that of 10days after flowering.

Key words: Wheat, GzCIPK7-5B gene, RT-PCR cloning, Bioinformatics, Gene expression

表1

试验所使用的特异性引物

引物名称Name of primer 引物序列Sequence of primer 用途Usage
CIPK7-5B-F CCTCTAGAATGGCCGTCGCCAAGAGCA 基因克隆
CIPK7-5B-R CCCCCGGGTCACAATTCCTCGCATCCATGCCAC 基因克隆
CIPK7-5B-F CGTCTTCCTCCAGCTCGTCTCC qRT-PCR和RT-PCR
CIPK7-5B-R GATGAGGACGTTCTGCGGCTTG qRT-PCR和RT-PCR
Actin-F CCAAGGCGGAGTACGATGAGTCT qRT-PCR和RT-PCR
Actin-R TTCATACAGCAGGCAAGCACCAT qRT-PCR和RT-PCR

表2

生物信息学分析软件及用途

在线软件Online software 用途Usage
http://web.expasy.org/prot param/ 蛋白的理化性质
https://www.cbs.dtu.dk/services/SignalP-3.0/ 信号肽预测
https://web.expasy.org/protscale/ 亲疏水性预测
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi 保守结构域预测
http://www.cbs.dtu.dk/services/ 磷酸化位点预测
https://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ 亚细胞定位预测
https://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ 二级结构预测
https://swissmodel.expasy.org/ 三级结构预测
MAGE 7.0 进化树构建
DNAMAN 8.0 多重序列比对

图1

GzCI PK7-5B的PCR扩增电泳图 M:DL2000;1:PCR产物

图2

GzCIPK7-5B的氨基酸组成 Ala:丙氨酸;Arg:精氨酸;Asn:天冬酰胺;Asp:天冬氨酸;Cys:半胱氨酸;Gln:谷氨酰胺;Glu:谷氨酸;Gly:甘氨酸;His:组氨酸;Ile:异亮氨酸;Leu:亮氨酸;Lys:赖氨酸;Met:蛋氨酸;Phe:苯丙氨酸;Pro:脯氨酸;Ser:丝氨酸;Thr:苏氨酸;Trp:色氨酸;Tyr:酪氨酸;Val:缬氨酸

图3

GzCIPK7-5B的保守结构域预测

图4

GzCIPK7-5B蛋白信号肽预测

图5

GzCIPK7-5B蛋白亲疏水性预测

图6

GzCIPK7-5B蛋白跨膜结构预测

图7

GzCIPK7-5B蛋白磷酸化位点预测

图8

GzCIPK7-5B蛋白二级结构预测

图9GzCI

PK7-5B蛋白三级结构预测

图10

GzCIPK7-5B基因的进化树分析

图11GzC

IPK7-5B氨基酸多重序列比对

图12

GzCIPK7-5B的表达谱分析

图13

GzCIPK7-5B在贵紫麦1号籽粒花青素合成关键期的相对表达量 “**”表示在0.01水平差异显著

[1] 马瑞, 李世贵, 刘维刚, 等. 植物CBL-CIPK信号系统的功能及其响应非生物胁迫作用机制研究进展. 植物生理学报, 2021, 57(3):521-530.
[2] Wang Y, Li T, John S J, et al. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiology Biochemistry, 2018, 123:103-113.
doi: 10.1016/j.plaphy.2017.11.019
[3] 许静, 高景阳, 李程成, 等. 过表达ZmCIPKHT基因增强植物耐热性. 作物学报, 2022, 48(4):851-859.
doi: 10.3724/SP.J.1006.2022.13013
[4] Wang R K, Li L L, Cao Z H, et al. Molecular clonging and fuctional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Molecular Biology, 2012, 79(1/2):123-135.
doi: 10.1007/s11103-012-9899-9
[5] Zhang Y M, Ling H J J, Dong W, et al. SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance. Plant Molecular Reporter, 2017, 35(6):634-646.
[6] Song S J, Feng Q N, Li Chun L, et al. A Tonoplast-associated calcium-signaliling module dampens ABA signaling during stomatal movement. Plant Physiology, 2018, 177(4):1666-1678.
doi: 10.1104/pp.18.00377
[7] Sanya S K, Kanwar P, Yadav A K, et al. Arabidopsis CBL interacting protein kinase 3 interavts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses. Plant Science, 2017, 254:48-59.
doi: 10.1016/j.plantsci.2016.11.004
[8] Zhao J F, Sun Z F, Zheng J, et al. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Molecular Biology, 2009, 69(6):661-674.
doi: 10.1007/s11103-008-9445-y pmid: 19105030
[9] Mahajaan S, Sopory S K, Tuteja N. Cloning and characterization of CBL-CIPK signaling components fromalegume(Pisum sativum). FEBS Journal, 2006, 27, 3(5):907-925.
[10] Huang C L, Ding S, Zhang H, et al. CIPK 7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Science, 2011, 181(1):57-64.
doi: 10.1016/j.plantsci.2011.03.011
[11] Qiu Q S, Gou Y, Detrich M, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12):8436-8441.
[12] Xing Y, Huang Y, Xiong L Z. Characterization of stress-responsive CIPK genes in rice for stress toleranceimprovement. Plant Physiology, 2007, 144(3):1416-1428.
doi: 10.1104/pp.107.101295
[13] 晋霞.小麦盐胁迫响应基因TaCIPK25的功能研究. 武汉:华中科技大学, 2017.
[14] Tian Q Y, Zhang X X, Yang A, et al. CIPK 23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. Plant Science, 2016, 246:70-79.
doi: S0168-9452(16)30010-3 pmid: 26993237
[15] Zhang X, Li Z C, Li X J, et al. CBL3 and CIPK 18 are required for the function of NHX5 and NHX6 in mediating Li+ homeostasis in Arabidopsis. Journal of Plant Physiology, 2020, 255:153295.
doi: 10.1016/j.jplph.2020.153295
[16] Peng H, Yang T, Whitaker BD, et al. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP glucosyl- transferase involved in fruit anthocyanin biosynthesis. BMC Plant Biology, 2016, 16(1):197.
doi: 10.1186/s12870-016-0888-z pmid: 27609111
[17] Zong Y, Xi X, Li S, et al. Allelic variation and transcriptional isoforms of wheat TaMYC1gene regulating anthocyanin synthesis in pericarp. Plant Science, 2017, 8:1645.
[18] Yu Y H, Xia X L, Yin W L, et al. Comparative genomic analysis of CIPK gene family in Arbidopsis and Populus. Plant Growth Regulation, 2007, 52(2):101-110.
doi: 10.1007/s10725-007-9165-3
[19] Li L B, Zhang Y R, Liu K C, et al. Identtification and bioinfprmatics analysis of SnRK2 and CIPKfamily genes in Sorghum. Agricultural Sciences in China, 2010, 9(1):19-30.
doi: 10.1016/S1671-2927(09)60063-8
[20] Cui X Y, Du Y T, Fu T F, et al. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. British Medical Council Plant Biology, 2018, 18(1):93.
[21] 余爱丽, 赵晋锋, 王高鸿, 等. 两个谷子CIPK基因在非生物逆境胁迫下的表达分析. 作物学报, 2016, 42(2):295-302.
[22] 冯志娟, 徐盛春, 刘娜, 等. CIPK基因对逆境胁迫及激素的响应特征. 植物遗传资源学报, 2017, 18(6):1168-1178.
doi: 10.13430/j.cnki.jpgr.2017.06.019
[23] 李亚坤, 陈乃钰, 杨晓雪, 等. 紫花苜蓿MsCIPK8基因的克隆与表达分析. 植物遗传资源学报, 2020, 21(2):491-499.
[24] Xu J, Li H D, Chen L Q, et al. A prontein kinase, interacting with two calcineurin B-like proteins, regulates K+transporter AKT1 in Arabidopsisi. Cell, 2006, 125:1347-1360.
doi: 10.1016/j.cell.2006.06.011
[25] Lee S C, Lan W Z, Kim B G, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences, 2007, 104(40):15959-15964.
[26] Ho C H, Lin S H, Hu H C, et al. CHL1functions as a nitrate sensor in plants. Cell, 2009, 138:1184-1194.
doi: 10.1016/j.cell.2009.07.004
[27] 毕惠惠, 贺亚伟, 毛伟伟, 等. 小麦TaCIPK8基因的表达分析及其与TaCBLs的互作. 植物遗传资源学报, 2018, 19(2):296-304.
doi: DOI:10.13430/j.cnki.jpgr.2018.02.013
[28] 时丕彪, 洪立洲, 王军, 等. 藜麦CqCIPK7基因的克隆与表达分析. 江苏农业学报, 2020, 36(4):1068-1072.
[1] 张明伟, 丁锦峰, 朱新开, 郭文善. 稻茬过晚播小麦高产密度和氮肥调控效应分析[J]. 作物杂志, 2023, (4): 126–135
[2] 宋晓, 张珂珂, 岳克, 黄晨晨, 黄绍敏, 孙建国, 郭腾飞, 郭斗斗, 张水清, 裴敏楠. 不同氮效率品种小麦根际土壤酶活性和细菌群落的差异[J]. 作物杂志, 2023, (4): 188–194
[3] 傅晓艺, 王红光, 刘志连, 李东晓, 何明琦, 李瑞奇. 水分胁迫对不同小麦幼苗期生长的影响及抗旱品种筛选[J]. 作物杂志, 2023, (4): 224–229
[4] 刘颖, 顾昀怿, 张伟杨, 杨建昌. 水分与氮素及其互作调控小麦产量和水氮利用效率研究进展[J]. 作物杂志, 2023, (4): 7–15
[5] 李宏生, 李绍祥, 杨忠慧, 杨家李, 刘琨, 熊世安, 李富乾, 郭辉, 杨木军. 温光敏两系杂交小麦杂交种纯度的表型和标记检测比较[J]. 作物杂志, 2023, (4): 71–76
[6] 李浩然, 李瑞奇, 李雁鸣. 海河平原小麦行距形式变化及其影响因素研究综述[J]. 作物杂志, 2023, (3): 12–19
[7] 李俊志, 常旭虹, 王德梅, 王艳杰, 杨玉双, 赵广才. 施氮水平对不同强筋小麦品种产量和品质的影响[J]. 作物杂志, 2023, (3): 148–153
[8] 罗四维, 石秀楠, 贾永红, 张金汕, 王凯, 李丹丹, 王润琪, 董艳雪, 石书兵. 滴灌的毛管间距和滴头间距对匀播冬小麦光合、干物质积累和产量形成的影响[J]. 作物杂志, 2023, (3): 230–237
[9] 邱凯华, 方淑梅, 梁喜龙. 稻瘟病菌类SRRM1转录因子的功能分析[J]. 作物杂志, 2023, (3): 246–253
[10] 张海斌, 吴晓华, 于美玲, 王小兵, 叶君, 崔思宇, 李元清, 王占贤, 张宏旭, 薛伟, 李岩, 崔国惠, 赵轩微, 刘娟. 内蒙古区域试验小麦品种(系)籽粒产量AMMI模型分析[J]. 作物杂志, 2023, (3): 27–34
[11] 李晶, 李鹏程, 贺永斌, 邢雅玲, 孟凡华, 周谦, 南铭. 16份俄罗斯冬小麦品种资源主要性状多元分析和综合评价[J]. 作物杂志, 2023, (3): 58–65
[12] 高振贤, 曹巧, 单子龙, 傅晓艺, 韩然, 何明琦, 史占良, 郑树松. 倒春寒对323份冬小麦种质资源影响初探[J]. 作物杂志, 2023, (3): 86–93
[13] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同筋型小麦品种产量及农艺性状的调控效应[J]. 作物杂志, 2023, (2): 131–137
[14] 王玉娇, 常旭虹, 王德梅, 王艳杰, 杨玉双, 石书兵, 赵广才. 播种方式对不同品种小麦产量和品质的影响[J]. 作物杂志, 2023, (1): 122–128
[15] 马瑞琦, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才, 常旭虹. 施氮量对北部冬麦区种植弱筋小麦产量与品质的影响[J]. 作物杂志, 2023, (1): 163–169
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!