作物杂志,2023, 第6期: 233–242 doi: 10.16035/j.issn.1001-7283.2023.06.032

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

氮和延迟收获对谷子产量及小米品质的影响

申甜雨1(), 王媛2, 董二伟2, 王劲松2, 刘秋霞2, 焦晓燕2()   

  1. 1山西大学生命科学学院,030006,山西太原
    2山西农业大学资源环境学院,030031,山西太原
  • 收稿日期:2022-09-16 修回日期:2023-09-14 出版日期:2023-12-15 发布日期:2023-12-15
  • 通讯作者: 焦晓燕,研究方向为杂粮养分高效利用途径与模式,E-mail:xiaoyan_jiao@126.com
  • 作者简介:申甜雨,研究方向为植物营养,E-mail:shen_tianyu@126.com
  • 基金资助:
    财政部和农业农村部:国家现代农业产业技术体系(CARS-06-14.5-A20);国家重点研发计划(2020YFD1000801-2)

Effects of Nitrogen and Delayed Harvest on Foxtail Millet Yield and Grain Quality

Shen Tianyu1(), Wang Yuan2, Dong Erwei2, Wang Jinsong2, Liu Qiuxia2, Jiao Xiaoyan2()   

  1. 1School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    2College of Resource & Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2022-09-16 Revised:2023-09-14 Online:2023-12-15 Published:2023-12-15

摘要:

以6个谷子品种(公谷88、晋谷21、长农47、长农35、冀谷41和豫谷35)为材料,设不施氮生理成熟收获(N0T1)、不施氮生理成熟延后14d收获(N0T2)、施氮150kg/hm2生理成熟收获(N1T1)和施氮150kg/hm2生理成熟延后14d收获(N1T2)4个处理,研究其对谷子产量、养分积累、小米叶酸含量及糊化特性的影响。结果表明,施氮提高了谷子的穗粒数、籽粒产量和地上部磷积累量,延迟收获提高了谷子千粒重和籽粒产量,降低了地上部钾积累量和小米叶酸含量。施氮和延迟收获降低了小米糊化的峰值黏度、谷值黏度及最终黏度,施氮降低其回升值,N0T2处理提高小米的糊化温度。相关性分析表明,籽粒产量与穗粒数、植株地上部氮和磷积累量呈正相关,与主要糊化参数呈负相关,小米总叶酸含量与植株地上部氮和钾积累量呈正相关,与糊化回升值呈负相关。施氮和延迟收获均有利于籽粒产量的形成,但降低了小米糊化特性,施氮在一定程度上缓解了延迟收获对地上部钾积累量和叶酸含量降低的影响。

关键词: 谷子, 延迟收获, 氮, 叶酸, 糊化特性

Abstract:

Six foxtail millet cultivars, including Gonggu 88, Jingu 21, Changnong 47, Changnong 35, Jigu 41 and Yugu 35, were used as test materials in experiments in 2021. There were four treatments:without N application combined with harvest at physiological maturity (N0T1), without N application combined with harvest 14d after physiological maturity (N0T2), 150 N kg/ha combined with harvest at physiological maturity (N1T1) and 150 N kg/ha combined with harvest 14d after physiological maturity with (N1T2). The effects of nitrogen and delayed harvest on yield, nutrient accumulation, folate content and pasting properties were studied. The results showed that N application increased grains number per ear (GNPE), grain yield and aboveground phosphorus accumulation. Delayed harvest increased 1000-grain weight and grain yield, and reduced K accumulation of aboveground and the content of total folate. Both N application and delayed harvest decreased peak viscosity, trough viscosity, and final viscosity. N application reduced setback of pasting. The pasting temperature was increased by N0T2 treatment. Correlation analysis showed that grain yield was positively correlated with GNPE, N and P accumulation. There were negative relationships between grain yield and most pasting parameters. The total folate content of millet was positively correlated with the accumulation of N and K, and negatively correlated with setback. Both N application and delayed harvest were able to exert beneficial effects on grain yield, but reduced the foxtail millet pasting properties. N application also alleviated the reduction of aboveground K accumulation and folate content caused by delayed harvest.

Key words: Foxtail millet, Delayed harvest, Nitrogen, Folate, Pasting properties

表1

供试谷子品种及收获日期

品种
Cultivar
育成单位
Breeding unit
留苗密度(×104株/hm2
Seedling density
(×104 plant/hm2)
不施氮(N0)
Without N application
施氮(N1)
N application
T1 T2 T1 T2
公谷88 Gonggu 88 吉林省农业科学院作物资源研究所 45.0 09-25 10-09 09-27 10-11
晋谷21 Jingu 21 山西省农业科学院经济作物研究所 45.0 09-26 10-10 09-28 10-12
长农47 Changnong 47 山西省农业科学院谷子研究所 45.0 10-01 10-15 10-02 10-16
长农35 Changnong 35 山西省农业科学院谷子研究所 45.0 10-01 10-15 10-02 10-16
冀谷41 Jigu 41 河北省农林科学院谷子研究所 52.5 09-22 10-06 09-25 10-09
豫谷35 Yugu 35 安阳市农业科学院 52.5 09-19 10-03 09-20 10-04

表2

施氮和收获时期对谷子产量及地上部养分累积影响的方差分析(F-值)

变异来源
Source of variations
产量
Yield
千粒重
1000-grain weight
穗粒数
Grain number per ear
地上干物质积累量
Dry matter aboveground
养分累积量Nutrient accumulation
N P K
氮水平N level (N) 48.11** 4.51* 40.89** 22.06** 481.88** 57.87** 50.30**
收获时期Harvest time (T) 4.61** 19.41** 0.00 0.01 0.13 3.52** 65.49**
氮水平×收获时期(N×T) 0.16 0.20 0.00 0.00 0.49 1.18 1.50

表3

施氮和收获时期对谷子籽粒产量和地上部氮磷钾积累的影响

品种
Cultivar
处理
Treatment
产量
Yield
(kg/hm2)
千粒重
1000-grain
weight (g)
穗粒数
Grain number
per ear
地上干物质积累量
Dry matter
aboveground (kg/hm2)
养分积累量Nutrient accumulation (kg/hm2)
N P K
公谷88
Gonggu 88
N0T1 5546.81±97.26b 2.48±0.01c 4977.27±227.37a 7448.33±28.57b 85.19±4.00b 16.98±0.26bc 136.67±2.44a
N0T2 5882.74±79.46b 2.63±0.02b 4975.25±226.06a 7555.48±26.51b 76.11±6.12b 16.54±0.95c 74.70±4.62c
N1T1 6057.97±3.17ab 2.52±0.04c 5353.25±77.95a 8873.50±38.88a 128.12±1.63a 19.67±0.73ab 137.19±3.85a
N1T2 6545.06±108.84a 2.71±0.02a 5359.88±75.28a 8823.87±47.68a 130.09±0.91a 20.05±1.24a 114.89±5.46b
晋谷21
Jingu 21
N0T1 4680.34±202.16b 2.59±0.02b 4025.09±169.01b 10 579.98±45.62b 91.53±0.56c 16.96±0.90b 138.06±1.54b
N0T2 4719.49±165.02b 2.61±0.03b 4020.15±167.94b 10 694.81±30.46b 96.76±1.71b 18.87±0.49a 104.99±5.51c
N1T1 5422.26±97.47a 2.63±0.03b 4581.17±68.66a 11 097.77±50.84a 141.84±2.47a 17.03±0.06b 164.74±5.36a
N1T2 5617.16±94.71a 2.72±0.01a 4588.51±66.39a 11 232.63±60.14a 140.83±0.51a 18.91±0.15a 128.41±1.19b
长农47
Changnong 47
N0T1 4700.43±55.13c 2.35±0.03c 4447.42±62.38b 9734.81±38.33b 81.47±3.02b 15.70±0.31b 115.39±3.49c
N0T2 4901.16±144.49c 2.45±0.04b 4447.80±61.93b 9826.12±33.33b 85.58±13.05b 14.19±0.97b 98.79±2.52d
N1T1 6214.54±30.12b 2.43±0.01bc 5674.80±46.79a 11 251.83±61.61a 160.38±5.67a 21.85±0.69a 177.23±3.43a
N1T2 6524.16±7.88a 2.56±0.02a 5675.49±43.29a 11 285.91±37.93a 161.26±3.72a 24.19±0.99a 130.20±4.66b
长农35
Changnong35
N0T1 5069.22±133.34b 2.30±0.04c 4914.8±178.35a 10 046.45±16.85b 90.22±4.20b 17.61±0.11b 108.67±4.94b
N0T2 5279.16±199.07b 2.39±0.03b 4913.46±179.76a 10 065.56±28.97b 90.16±9.35b 18.17±0.97b 90.64±12.90b
N1T1 5693.80±57.89a 2.43±0.01b 5216.68±44.20a 10 913.31±48.47a 147.23±4.13a 22.95±1.06a 184.77±5.87a
N1T2 5972.16±26.69a 2.54±0.02a 5227.02±49.37a 10 969.86±10.08a 149.23±11.13a 22.32±0.91a 114.01±4.66b
冀谷41
Jigu 41
N0T1 5058.96±29.46c 2.29±0.02b 4208.66±31.71b 9675.46±39.54b 82.75±6.44b 17.08±0.76b 114.76±2.11ab
N0T2 5295.57±82.46bc 2.41±0.02a 4195.30±32.60a 9582.00±32.14b 74.02±8.66b 18.30±0.89b 102.07±4.69c
N1T1 5594.01±37.28b 2.27±0.03b 4693.13±84.08a 11 511.88±50.19a 144.71±2.57a 17.39±0.28b 116.94±3.76a
N1T2 5942.45±188.79a 2.41±0.04a 4696.42±80.97a 11 566.02±57.64a 140.31±4.35a 21.47±1.28a 103.17±3.65bc
豫谷35
Yugu 35
N0T1 5663.72±56.61d 2.30±0.00b 4701.27±45.64b 10 840.04±61.63b 83.98±3.76b 16.51±0.42b 110.54±3.90b
N0T2 6104.55±61.76c 2.47±0.02a 4701.61±47.53b 10 784.63±59.71b 74.75±3.36b 17.17±2.27b 84.58±5.81c
N1T1 7205.72±54.60b 2.30±0.03b 5961.13±22.95a 11 672.24±47.45a 147.08±4.85a 22.91±0.31a 152.98±4.46a
N1T2 7717.08±80.89a 2.46±0.02a 5975.40±26.02a 11 584.76±62.95a 153.26±2.73a 24.24±1.62a 108.89±6.54b

表4

施氮和收获时期对小米叶酸及其衍生物含量影响的方差分析(F-值)

变异来源
Source of variation
总叶酸
Total folate
5-甲酰四氢叶酸
5-CHO-THF
5-甲基四氢叶酸
5-CH3-THF
四氢叶酸
THF
10-甲酰叶酸
10-CHO-FA
5,10-次甲基四氢叶酸
5,10-CH=THF
氮水平N level (N) 178.72** 147.71** 93.27** 136.31** 25.89** 119.10**
收获时期Harvest time (T) 503.02** 442.70** 177.44** 345.75** 754.30** 129.13**
氮水平×收获时期(N×T) 20.69** 22.11** 3.09 46.49** 21.19* 70.98**

表5

施氮和收获时期对小米总叶酸及其衍生物含量的影响

品种
Cultivar
处理
Treatment
总叶酸
Total folate
5-甲酰四氢叶酸
5-CHO-THF
5-甲基四氢叶酸
5-CH3-THF
四氢叶酸
THF
10-甲酰叶酸
10-CHO-FA
5,10-次甲基四氢叶酸
5,10-CH=THF
公谷88
Gonggu 88
N0T1 44.05±3.30b 21.72±1.31b 17.63±1.82b 1.47±0.15b 2.49±0.20b 0.73±0.15b
N0T2 15.22±0.46d 6.97±0.28d 7.29±0.24d 0.62±0.02c 0.45±0.04c 0.34±0.03b
N1T1 56.94±3.40a 28.02±2.89a 21.84±0.64a 2.36±0.20a 3.17±0.14a 1.56±0.19a
N1T2 26.33±1.38c 12.28±0.42c 12.44±0.87c 1.09±0.09b 0.52±0.04c 0.53±0.04b
晋谷21
Jingu 21
N0T1 41.40±1.56b 21.08±1.27b 16.40±0.40b 1.33±0.22b 2.09±0.30b 0.50±0.24b
N0T2 14.82±2.39d 5.98±1.22d 8.23±1.13c 0.40±0.03c 0.51±0.03c 0.21±0.04b
N1T1 69.16±2.13a 32.14±0.73a 30.29±0.74a 2.20±0.29a 3.09±0.15a 1.44±0.30a
N1T2 31.89±1.84c 13.63±1.07c 17.06±0.77b 0.83±0.05b 0.49±0.02c 0.36±0.04b
长农47
Changnong 47
N0T1 32.20±0.39b 14.16±1.60b 14.25±1.71b 1.22±0.14b 2.22±0.29b 0.35±0.21b
N0T2 18.60±1.33c 7.74±0.56b 9.99±0.74c 0.59±0.05c 0.57±0.02c 0.28±0.06b
N1T1 60.41±3.44a 28.36±3.31a 25.15±0.31a 2.48±0.20a 2.82±0.17a 1.61±0.20a
N1T2 27.07±2.09b 11.32±0.97b 14.65±0.96b 0.74±0.13c 0.61±0.03c 0.36±0.04b
长农35
Changnong 35
N0T1 31.67±2.16b 14.63±1.00b 13.35±1.38b 1.36±0.03b 1.97±0.25b 0.36±0.13b
N0T2 15.20±2.41c 6.09±1.01c 8.23±1.24c 0.57±0.16c 0.43±0.02c 0.31±0.08b
N1T1 57.26±3.26a 29.90±2.24a 20.96±0.69a 2.46±0.29a 2.68±0.35a 1.26±0.07a
N1T2 30.03±3.31b 13.53±2.01b 15.20±1.17b 0.89±0.09bc 0.48±0.04c 0.41±0.05b
冀谷41
Jigu 41
N0T1 42.44±1.24b 17.41±1.03b 21.65±0.40a 1.28±0.19b 1.65±0.07b 0.45±0.15b
N0T2 15.03±0.86d 6.61±0.47d 7.62±0.30c 0.54±0.05c 0.49±0.03c 0.27±0.05b
N1T1 54.05±0.81a 26.32±0.25a 21.85±0.56a 2.19±0.12a 2.43±0.23a 1.26±0.13a
N1T2 22.31±2.43c 9.93±0.97c 11.28±1.39b 0.74±0.08c 0.54±0.02c 0.36±0.02b
豫谷35
Yugu 35
N0T1 39.20±0.29b 19.38±0.17b 16.17±0.10b 1.06±0.21b 2.32±0.17a 0.27±0.13b
N0T2 22.41±1.15d 9.34±0.46d 11.92±0.81d 0.80±0.03b 0.58±0.04c 0.34±0.02b
N1T1 63.07±0.98a 31.39±0.81a 24.92±0.51a 2.64±0.08a 2.68±0.18a 1.43±0.02a
N1T2 27.61±1.38c 11.99±0.77c 14.19±0.53c 0.95±0.05b 0.60±0.03c 0.48±0.05a

表6

施氮和收获时期对小米糊化特性影响的方差分析(F-值)

变异来源
Source of variation
峰值黏度
Peak viscosity
谷值黏度
Trough viscosity
崩解值
Breakdown
最终黏度
Final viscosity
回升值
Setback
糊化温度
Pasting temperature
氮水平N level (N) 115.83** 55.04** 26.24** 243.27** 108.43** 0.09
收获时期Harvest time (T) 13.43** 172.13** 4.25* 76.13** 3.93* 8.43**
氮水平×收获时期(N×T) 0.02 0.25 0.01 9.71** 15.98** 1.55

表7

施氮和收获时期对小米糊化特性的影响

品种
Cultivar
处理
Treatment
峰值黏度
Peak viscosity
(BU)
谷值黏度
Trough viscosity
(BU)
崩解值
Breakdown
(BU)
最终黏度
Final viscosity
(BU)
回升值
Setback
(BU)
糊化温度
Pasting temperature
(oC)
公谷88
Gonggu 88
N0T1 300.33±4.18a 182.33±9.06a 103.00±2.52a 548.00±3.21a 365.67±7.51b 77.27±0.32ab
N0T2 290.00±4.04a 106.00±10.02b 93.33±0.88b 514.00±11.14b 408.00±6.03a 78.30±0.06a
N1T1 252.67±9.94b 181.67±5.24a 83.00±2.08c 498.00±9.17b 316.33±14.19c 77.33±0.48ab
N1T2 252.00±8.66b 65.67±5.90c 86.00±2.65c 413.33±4.70c 347.67±9.14bc 77.00±0.40b
晋谷21
Jingu 21
N0T1 296.00±2.89a 210.33±0.88a 97.00±9.29ab 540.67±7.75a 330.33±8.51b 75.80±0.29a
N0T2 288.00±11.02a 155.67±5.21b 104.67±6.12a 551.67±7.31a 396.00±4.51a 76.87±0.52a
N1T1 251.67±10.73b 139.00±5.51c 98.33±9.33ab 430.67±3.84b 291.67±7.84c 76.20±0.97a
N1T2 215.33±3.93c 54.67±6.69d 76.67±2.33b 330.33±4.26c 275.67±6.67c 77.60±0.15a
长农47
Changnong 47
N0T1 273.67±13.86a 153.67±9.24a 96.00±6.43a 526.00±2.65a 372.33±11.10a 76.33±0.32a
N0T2 245.00±10.15ab 64.67±13.04b 84.00±5.29a 420.67±10.48b 356.00±21.55a 77.37±0.74a
N1T1 240.67±6.01ab 134.33±19.60a 85.33±4.33a 431.00±5.20b 296.67±16.80b 76.40±0.75a
N1T2 214.67±9.68b 47.67±1.76b 81.33±5.78a 318.67±3.48c 271.00±4.73b 76.97±0.43a
长农35
Changnong 35
N0T1 271.33±12.02a 214.00±15.01a 98.33±3.28a 507.00±16.04a 278.33±16.67bc 75.20±0.45b
N0T2 271.33±1.76a 119.67±14.88bc 99.33±2.96a 489.33±6.12a 369.67±8.76a 76.43±0.48b
N1T1 239.33±6.89b 132.33±13.57b 85.67±8.99ab 437.00±10.58b 304.67±10.27b 76.43±0.49b
N1T2 204.00±0.58c 82.67±1.45c 75.00±0.58b 339.33±4.63c 256.67±3.84c 79.23±1.29a
冀谷41
Jigu 41
N0T1 309.00±11.50a 198.33±8.35a 103.33±4.48a 569.00±9.07a 370.67±1.86a 77.07±0.45a
N0T2 260.67±13.22b 97.00±3.61c 78.33±9.56b 493.00±4.51b 396.00±6.66a 79.73±0.64a
N1T1 222.33±1.45c 134.67±8.88b 69.67±1.45b 423.33±8.84c 288.67±2.60b 77.67±0.23a
N1T2 216.00±7.09c 47.00±12.06d 66.67±1.33b 344.67±7.22d 297.67±19.17b 76.47±2.51a
豫谷35
Yugu 35
N0T1 270.67±5.81a 181.33±10.98a 81.00±10.82a 543.67±2.03a 362.33±8.95b 77.40±0.06b
N0T2 269.00±7.09a 101.67±3.33c 87.67±2.91a 508.00±7.23b 406.33±10.17a 78.63±0.27a
N1T1 222.33±10.68b 130.00±1.53b 76.33±2.03a 441.00±1.00c 311.00±1.53c 78.10±0.25a
N1T2 222.67±8.41b 95.33±1.76c 78.00±1.53a 370.67±11.26d 275.33±10.84d 78.17±0.09a

图1

谷子产量及构成、地上部氮磷钾积累量、叶酸含量及糊化参数的主成分分析 (a) 赋分图,(b) 载荷图。GY:产量,TWG:千粒重,GNPE:穗粒数,N:植株氮累积量,P:植株磷累积量,K:植株钾累积量,F:总叶酸含量,PV:峰值黏度,TV:谷值黏度,BD:崩解值,FV:最终黏度,SB:回升值,PT:糊化温度。下同

图2

谷子产量及其构成、地上部氮磷钾累积量、叶酸含量及糊化参数间的相关分析 (a) 公谷88,(b) 晋谷21,(c) 长农47,(d) 长农35,(e) 冀谷41,(f) 豫谷35

[1] 贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55(4):653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003
[2] Verma S, Srivastava S, Tiwari N. Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products. Journal of Food Science and Technology, 2014, 52(8):5147-5155.
doi: 10.1007/s13197-014-1617-y
[3] Shen R, Yang S P, Zhao G H, et al. Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content. Journal of Cereal Science, 2015, 61:86-93.
doi: 10.1016/j.jcs.2014.10.009
[4] Paul M F. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline. Trends in Food Science and Technology, 2000, 11:296-297.
doi: 10.1016/S0924-2244(01)00010-3
[5] Soujanye K V, Jayadeep A P. Obesity-associaed biochemical markers of inflammation and the role of grain phytochemicals. Journal of Food Biochemistry, 2022, 46(9):e14257.
[6] Blancquaert D, Storozhenko S, Loizeau K, et al. Folates and Folic Acid: from fundamental research toward sustainable health. Critical Reviews in Plant Sciences, 2010, 29(1):14-15.
doi: 10.1080/07352680903436283
[7] Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. The New England Journal of Medicine, 2002, 346(7):476-483.
doi: 10.1056/NEJMoa011613 pmid: 11844848
[8] Matthias E, Michael A, Inna K, et al. Folate deficiency increases postischemic brain injury. Folate Deficiency and Stroke, 2005, 36:321-325.
[9] 邵丽华, 王莉, 白文文, 等. 山西谷子资源叶酸含量分析及评价. 中国农业科学, 2014, 47(7):1265-1272.
doi: 10.3864/j.issn.0578-1752.2014.07.003
[10] Bekaert S, Storozhenk S, Mehrshahi P, et al. Folate biofortification in food plants. Trends in Plant Science, 2008, 13(1):30-35.
[11] Li C. Recent progress in understanding starch gelatinization-an important property determining food quality. Carbohydrate Polymer, 2022, 293:119735.
doi: 10.1016/j.carbpol.2022.119735
[12] 杨志杰, 刘焕新, 吴海岩, 等. 谷子收获机械化发展方向及配套机具. 河北农业科学, 2013, 17(3):6-8.
[13] 贺孝兵. 山西省谷子生产全程机械化技术集成研究与推广. 农业开发与装备, 2018(12):218-219.
[14] 柳枫贺, 王克如, 李健, 等. 影响玉米机械收粒质量因素的分析. 作物杂志, 2013(4):116-119.
[15] 谢瑞芝, 雷晓鹏, 王克如, 等. 黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014(2):76-79.
[16] Xiao Q G, Xin F, Lou Z X, et al. Effect of aviation spray adjuvants on defoliant droplet deposition and cotton defoliation efficacy sprayed by unmanned aerial vehicles. Agronomy, 2019, 9(5):217.
doi: 10.3390/agronomy9050217
[17] 李少昆, 王克如, 谢瑞芝, 等. 机械粒收推动玉米生产方式转型. 中国农业科学, 2018, 51(10):1842-1844.
doi: 10.3864/j.issn.0578-1752.2018.10.003
[18] 马贵芳, 满夏夏, 张益娟, 等. 谷子穗发育期转录组与叶酸代谢谱联合分析. 作物学报, 2021, 47(5):826-846.
[19] 姜小苓, 张自阳, 冯素伟, 等. 收获期对BNS杂交小麦面粉和馒头品质的影响. 应用生态学报, 2013, 24(12):3495-3500.
[20] 高小峰, 景航, 闫本帅, 等. 长期施氮对谷子根系内生真菌群落特征的影响. 水土保持学报, 2021, 35(5):303-311.
[21] 张学林, 王群, 赵亚丽, 等. 施氮水平和收获时期对夏玉米产量和籽粒品质的影响. 应用生态学报, 2010, 21(10):2565-2572.
[22] 申丹丹, 牛轶男, 朱敏, 等. 氮、硫肥配施对稻茬麦氮素利用及籽粒产量和品质的影响. 麦类作物学报, 2022, 42(2):188-195.
[23] 谢呈辉, 马海曌, 许宏伟, 等. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响. 作物学报, 2022, 48(2):463-477.
doi: 10.3724/SP.J.1006.2022.14010
[24] Li W C, Liang Q J, Ratnesh C M, et al. The 5-formyl- tetrahydrofolate proteome links folates with C/N metabolism and reveals feedback regulation of folate biosynthesis. The Plant Cell, 2021, 33(10):3367-3385.
doi: 10.1093/plcell/koab198
[25] Jiang L, Liu Y N, Sun H, et al. The mitochondrial folylpolyglutamate synthetase gene is required for nitrogen utilization during early seedling development in Arabidopsis. Plant Physiology, 2013, 161(2):971-989.
doi: 10.1104/pp.112.203430 pmid: 23129207
[26] Akhtar T, Orsomando G, Mehrshahi P, et al. A central role for gamma-glutamyl hydrolases in plant folate homeostasis. The Plant Journal, 2010, 64(2):256-266.
doi: 10.1111/j.1365-313X.2010.04330.x pmid: 21070406
[27] Suh J R, Herbig A K, Stover P J. New perspectives on folate catabolism. Annual Review of Nutrition, 2001, 21(1):255-282.
doi: 10.1146/nutr.2001.21.issue-1
[28] Tschoep H, Gibon Y, Carillo P, et al. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell & Environment, 2009, 32(3):300-318.
[29] Gao L C, Bai W M, Xia M J, et al. Diverse effects of nitrogen fertilizer on the structural, pasting, andthermal properties of common buckwheat starch. International Journal of Biological Macromolecules, 2021, 179:542-549.
doi: 10.1016/j.ijbiomac.2021.03.045
[30] Gu J F, Chen J, Chen L, et al. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. The Crop Journal, 2015, 3(4):285-297.
doi: 10.1016/j.cj.2015.03.007
[31] Riaz B, Liang Q J, Wan X, et al. Folate content analysis of wheat cultivars developed in the North China Plain. Food Chemistry, 2019, 289:377-383.
doi: S0308-8146(19)30505-9 pmid: 30955626
[32] 李璐璐, 王克如, 谢瑞芝, 等. 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017, 50(11):2052-2060.
doi: 10.3864/j.issn.0578-1752.2017.11.011
[33] 刘梦, 张垚, 葛均筑, 等. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响. 作物学报, 2023, 49(2):497-510.
doi: 10.3724/SP.J.1006.2023.23014
[34] 薛军, 王群, 李璐璐, 等. 玉米生理成熟后倒伏变化及其影响因素. 作物学报, 2018, 44(12):1782-1792.
doi: 10.3724/SP.J.1006.2018.01782
[35] 魏凤桐, 陶洪斌, 王璞. 旱稻297非结构性碳水化合物的生产与产量构成因子的关系. 作物学报, 2010, 36(12):2135-2142.
doi: 10.3724/SP.J.1006.2010.02135
[36] Ding C Q, You J, Chen L, et al. Nitrogen fertilizer increase spikelet number peer panicle by enhancing cytokinin synthesis in rice. Plant Cell Report, 2014, 33(2):363-371.
[37] 周群, 袁锐, 朱宽宇, 等. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点. 作物学报, 2022, 48(9):2285-2299.
doi: 10.3724/SP.J.1006.2022.12070
[38] 侯云鹏, 孔丽丽, 尹彩侠, 等. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与运转的调控效应. 植物营养与肥料学报, 2021, 27(1):54-65.
[39] 曹晓燕, 武爱莲, 王劲松, 等. 施氮量对高粱产量、品质及氮利用效率的影响. 作物杂志, 2021(2):108-115.
[40] 王劲松, 董二伟, 武爱莲, 等. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52(22):4166-4176.
doi: 10.3864/j.issn.0578-1752.2019.22.020
[41] Ning P, Li S, Yu P, et al. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Research, 2013, 144:19-27.
doi: 10.1016/j.fcr.2013.01.020
[42] 董二伟, 王劲松, 武爱莲, 等. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响. 作物学报, 2021, 47(12):2459-2470.
doi: 10.3724/SP.J.1006.2021.04252
[43] Peng Y F, Yu P, Zhang Y, et al. Temporal and spatial dynamics in root length density of field-grown maize and NPK in the soil profile. Field Crops Research, 2012, 131:9-16.
doi: 10.1016/j.fcr.2012.03.003
[44] Hou S Y, Man X X, Lian B Y, et al. Folate metabolic profiling and expression of folate metabolism-related genes during panicle development in foxtail millet (Setaria italica (L.) P. Beauv). Journal of the Science of Food and Agriculture, 2021, 102(1):268-279.
doi: 10.1002/jsfa.v102.1
[45] Lian T, Guo W Z, Chen M R, et al. Genome-wide identification and transcriptional analysis of folate metabolism-related genes in maize kernels. BMC Plant Biology, 2015, 15:204.
doi: 10.1186/s12870-015-0578-2 pmid: 26283542
[46] Hu H L, Zhao H H, Zhang L G, et al. The application of 1- methylcyclopropene preserves the postharvest quality of cabbage by inhibiting ethylene production, delaying chlorophyll breakdown and increasing antioxidant capacity. Scientia Horticulture, 2021, 281:109986.
doi: 10.1016/j.scienta.2021.109986
[47] 姜凌, 张春义. 作物叶酸生物强化. 生命科学, 2015, 27(8):1055-1060.
[48] Edelmann M, Kariluoto S, Nystrom L, et al. Folate in oats and its milling fractions. Food Chemistry, 2012, 135(3):1938-1947.
doi: 10.1016/j.foodchem.2012.06.064 pmid: 22953943
[49] Gorelova V, Bastien O, Clerck O D, et al. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Scientific Reports, 2019, 9(1):5731.
doi: 10.1038/s41598-019-42146-5 pmid: 30952916
[50] Shimelis E A, Meaza M, Rakshit S K. Physico-chemical properties, pasting behavior and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L.) varieties grown in East Africa. Agrical Engineering International,Agricultural Engineering International, 2006, 8:015.
[51] Zhu D W, Zhang H C, Guo B W, et al. Effect of nitrogen management on the structure and physicochemical properties of rice starch. Journal of Agricultural and Food Chemistry, 2016, 64(42):8019-8025.
doi: 10.1021/acs.jafc.6b03173 pmid: 27715058
[52] Gao L C, Xia M J, Wan C X, et al. Analysis of synthesis,accumulation and physicochemical properties of Tartary buckwheat starches affected by nitrogen fertilizer. Carbohydrate Polymers, 2021, 273:118570.
doi: 10.1016/j.carbpol.2021.118570
[53] Kong X L, Zhu P, Sui Z Q, et al. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chemistry, 2015, 172(1):433-440.
doi: 10.1016/j.foodchem.2014.09.085
[54] Du S K, Jiang H X, Ai Y F, et al. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches. Carbohydrate Polymers, 2014, 108:200-205.
doi: 10.1016/j.carbpol.2014.03.004
[55] 宋霄君, 张敏, 武雪萍, 等. 干旱胁迫对小麦不同品种胚乳淀粉结构和理化特性的影响. 中国农业科学, 2017, 50(2):260-271.
doi: 10.3864/j.issn.0578-1752.2017.02.006
[56] 王强生, 郑文, 樊高琼, 等. 生态条件与氮肥运筹对四川小麦淀粉RVA谱特征参数的影响. 麦类作物学报, 2016, 36(1):86-92.
[57] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. Journal of Cereal Science, 2002, 36(3):285-294.
doi: 10.1006/jcrs.2001.0465
[58] 杨宁, 赵护兵, 王朝, 等. 豆科作物-小麦轮作方式下旱地小麦花后干物质及养分累积、转移与产量的关系. 生态学报, 2012, 32(15):4827-4835.
[59] Giordano D, Reyneri A, Blandino M. Folate distribution in bution in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum durum Desf.) pearled fractions. Journal of the Science of Food and Agriculture, 2016, 96(5):1709-1715.
doi: 10.1002/jsfa.7276 pmid: 26018777
[1] 刘哲文, 郭丹丹, 常旭虹, 王德梅, 王艳杰, 杨玉双, 刘希伟, 王玉娇, 石书兵, 赵广才. 强筋小麦花后氮素积累和转运对氮肥追施时期和比例的响应[J]. 作物杂志, 2023, (6): 114–120
[2] 修俊杰, 刘学良. 水氮互作对花针期花生生理特性及生长的影响[J]. 作物杂志, 2023, (6): 174–180
[3] 董好胜, 王琦, 闫鹏, 许艳丽, 张薇, 卢霖, 董志强. 乙矮合剂对谷子茎秆抗倒伏能力及产量的影响[J]. 作物杂志, 2023, (6): 181–189
[4] 赵丽洁, 赵海燕, 韩根兰, 王江, 聂萌恩, 杜慧玲, 原向阳, 董淑琦. 氮肥配施有机肥对谷子品质的影响[J]. 作物杂志, 2023, (6): 224–232
[5] 吴胜, 段玉, 张婷婷, 安昊, 张君, 梁俊梅, 张胜. 食葵干物质积累、转运和产量的关系以及对水氮互作的响应[J]. 作物杂志, 2023, (6): 243–251
[6] 张福耀, 平俊爱, 焦晓燕. 高粱的耐瘠性与养分高效利用研究现状与展望[J]. 作物杂志, 2023, (6): 26–34
[7] 刘艳, 曲航, 邢月华, 王晓辉, 宫亮. 新型氮肥对水稻生长、氮肥利用率和经济效益的影响[J]. 作物杂志, 2023, (5): 110–116
[8] 王义凡, 任宁, 董向阳, 赵亚南, 叶优良, 汪洋, 黄玉芳. 控释尿素与普通尿素配施对小麦产量、氮素吸收及经济效益的影响[J]. 作物杂志, 2023, (5): 117–123
[9] 刘秋员, 李猛, 高阳光, 史孟豫, 卫云飞, 季新, 厉励, 刘亚丽, 王付娟. 减氮并调整氮肥运筹模式对常规粳稻产量及稻米品质的影响[J]. 作物杂志, 2023, (5): 131–137
[10] 朱文娟, 任月梅, 杨忠, 郭瑞锋, 张绶, 任广兵. 谷子土壤微生物群落结构及功能预测分析[J]. 作物杂志, 2023, (5): 170–178
[11] 胡锐, 胡香玉, 傅友强, 叶群欢, 潘俊峰, 梁开明, 李妹娟, 刘彦卓, 钟旭华. 氮肥运筹对水稻根系生长发育的影响及其与氮肥吸收利用的关系[J]. 作物杂志, 2023, (5): 179–186
[12] 管庆林, 朴晟源, 张思唯, 王俊, 雷云康, 钟秋, 赵铭钦. 中微量元素配施对雪茄烟叶光合特性、碳氮代谢及产量和质量的影响[J]. 作物杂志, 2023, (5): 187–196
[13] 依兵, 刘金刚, 宋殿秀, 王德兴, 赵明珠, 刘晓宏, 孙恩玉, 崔良基. 干旱地区向日葵与谷子间作的土地生产力及种间竞争力的研究[J]. 作物杂志, 2023, (5): 219–223
[14] 张明伟, 丁锦峰, 朱新开, 郭文善. 稻茬过晚播小麦高产密度和氮肥调控效应分析[J]. 作物杂志, 2023, (4): 126–135
[15] 陈玥, 宫亮, 金丹丹, 张鑫, 李波, 邹晓锦, 隋世江, 叶鑫, 刘艳. 北方粳稻最优产量氮肥阈值周年变化及其影响因素分析[J]. 作物杂志, 2023, (4): 144–151
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!