作物杂志,2024, 第1期: 1622 doi: 10.16035/j.issn.1001-7283.2024.01.003
吕增帅(), 董红业, 王鹏, 段维, 刘胜利(), 柳延涛()
Lü Zengshuai(), Dong Hongye, Wang Peng, Duan Wei, Liu Shengli(), Liu Yantao()
摘要:
向日葵作为我国重要的特色经济作物,杂草危害严重制约其产业发展,除草剂作为简便高效的化学防治手段,在生产中得到广泛应用。本文综合国内外向日葵的研究现状,介绍了其除草剂抗性形成的靶向及非靶向抗除草剂机制,总结了国内外在靶向及非靶向除草剂抗性育种的研究进展,以及除草剂抗性在杂交种工程化制种中的应用,以期为向日葵除草剂抗性育种研究及应用提供理论指导,促进向日葵产业朝着绿色高质量的方向发展。
[53] |
Sala C A, Bulos M, Echarte A M. Genetic analysis of an induced mutation conferring imidazolinone resistance in sunflower. Crop Science, 2008, 48(5):1817-1822.
doi: 10.2135/cropsci2007.11.0625 |
[54] | Weston B, Pfenning M, Perez-Brea J, et al. Yield and oil improvements in clearfield® plus sunflowers. Mar del Plata- Balcarce,Argentina, 2012. |
[55] | Streit L G. DuPont™ ExpressSun™ herbicide technology in sunflower. Mar del Plata-Balcarce,Argentina, 2012. |
[56] |
Lukomets V M, Trunova M V, Demurin Y N. Modern trends in breeding and genetic improvement of sunflower varieties and hybrids at VNIIMK. Vavilov Journal of Genetics and Breeding, 2021, 25(4):388-393.
doi: 10.18699/VJ21.05 |
[57] | 白全江, 云晓鹏, 杜磊, 等. 抗除草剂新品种防除向日葵列当用药技术研究. 北方农业学报, 2018, 46(4):77-81. |
[58] | 肖国樱. 一种不育系解决机械化制种和不育系混杂的设想与实践. 作物研究, 2012, 26(5):527-528. |
[59] |
关周博, 董育红, 田建华, 等. 非转基因抗除草剂油菜细胞质雄性不育系的选育及应用. 中国农学通报, 2020, 36(26):9-13.
doi: 10.11924/j.issn.1000-6850.casb20200100017 |
[60] |
杨晓杰, 谢德意, 赵元明, 等. 新型抗除草剂棉花不育系Yu98-8 A1的培育及鉴定. 植物遗传资源学报, 2013, 14(4):723-727.
doi: 10.13430/j.cnki.jpgr.2013.04.023 |
[61] | 李慧英, 孙敏, 刘壮, 等. 油用向日葵抗除草剂亲本材料选育研究. 宁夏农林科技, 2015, 56(7):55-56. |
[62] |
Jhansi Rani S, Usha R. Transgenic plants: Types, benefits, public concerns and future. Journal of Pharmacy Research, 2013, 6(8):879-883.
doi: 10.1016/j.jopr.2013.08.008 |
[63] |
Neskorodov Y B, Rakitin A L, Kamionskaya A M, et al. Developing phosphinothricin-resistant transgenic sunflower (Helianthus annuus L.) plants. Plant Cell,Tissue and Organ Culture (PCTOC), 2010, 100(1):65-71.
doi: 10.1007/s11240-009-9620-0 |
[64] | 张玉池, 王晓蕾, 徐文蓉, 等. 国内外抗除草剂基因专利的分析. 杂草学报, 2017, 35(2):1-22. |
[1] | Pal D. Chapter 130 Sunflower (Helianthus annuus L.) seeds in health and nutrition//Nuts and Seeds in Health and Disease Prevention. San Diego: Academic Press, 2011:1097-1105. |
[2] | 赵贵兴, 钟鹏, 陈霞, 等. 中国向日葵产业发展现状及对策. 农业工程, 2011, 1(2):42-45. |
[65] |
Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4):347-355.
doi: 10.1038/nbt.2842 pmid: 24584096 |
[66] |
Lin C S, Hsu C T, Yuan Y H, et al. DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration. Plant Physiology, 2022, 188(4):1917-1930.
doi: 10.1093/plphys/kiac022 |
[67] |
Zhang R, Liu J X, Chai Z Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5):480-485.
doi: 10.1038/s41477-019-0405-0 pmid: 30988404 |
[68] |
Chilcoat D, Liu Z B, Sander J. Use of CRISPR/Cas9 for crop improvement in maize and soybean. Progress in Molecular Biology and Translational Science, 2017, 149:27-46.
doi: S1877-1173(17)30065-0 pmid: 28712499 |
[69] |
Sun Y W, Zhang X, Wu C Y, et al. Engineering herbicide- resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 2016, 9(4):628-631.
doi: 10.1016/j.molp.2016.01.001 |
[70] |
Shimatani Z, Kashojiya S, Takayama M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas 9 cytidine deaminase fusion. Nature Biotechnology, 2017, 35(5):441-443.
doi: 10.1038/nbt.3833 pmid: 28346401 |
[71] |
Wu J, Chen C, Xian G, et al. Engineering herbicide resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnology Journal, 2020, 18(9):1857-1859.
doi: 10.1111/pbi.v18.9 |
[3] | 中华人民共和国农业农村部. 向日葵占比油料播种面积、产量及比重. (2022-03-02)[2022-08-01].http://zdscxx.moa.gov.cn:8080/nyb/pc/sourceArea.jsp. |
[4] | Blamey F P C, Zollinger R K, Schneiter A A. Sunflower Production and Culture. Madison,Wisconsin, USA:Agronomy Monographs, 1997:595-670. |
[5] |
崔超, 王靖, 王海伟, 等. 不同列当寄生严重度对向日葵产量形成及生理特性的影响. 中国油料作物学报, 2016, 38(4):518-523.
doi: 10.7505/j.issn.1007-9084.2016.04.017 |
[6] | 吴文龙, 姜翠兰, 黄兆峰, 等. 我国向日葵列当发生危害现状调查. 植物保护, 2020, 46(3):266-273. |
[7] | 张一宾, 顾林玲. 近年来全球向日葵种植面积及农药使用市场与品种. 现代农药, 2018, 17(1):16-18. |
[8] |
Murphy B P, Tranel P J. Target-Site mutations conferring herbicide resistance. Plants, 2019, 8(10):382.
doi: 10.3390/plants8100382 |
[9] |
Powles S B, Yu Q. Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 2010, 61(1):317-347.
doi: 10.1146/arplant.2010.61.issue-1 |
[10] |
Heap I. Global perspective of herbicide-resistant weeds. Pest Management Science, 2014, 70(9):1306-1315.
doi: 10.1002/ps.3696 pmid: 24302673 |
[11] |
Sammons R D, Gaines T A. Glyphosate resistance: State of knowledge. Pest Management Science, 2014, 70(9):1367-1377.
pmid: 25180399 |
[12] |
Tranel P J, Wright T R. Review resistance of weeds to ALS- inhibiting herbicides: What have we learned. Weed Science, 2002, 50(6):700-712.
doi: 10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2 |
[13] |
Yu Q, Powles S B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Management Science, 2014, 70(9):1340-1350.
doi: 10.1002/ps.3710 pmid: 24338926 |
[14] |
Breccia G, Vega T, Felitti S A, et al. Differential expression of acetohydroxyacid synthase genes in sunflower plantlets and its response to imazapyr herbicide. Plant Science, 2013, 208:28-33.
doi: 10.1016/j.plantsci.2013.03.008 pmid: 23683926 |
[15] |
Bernasconi P, Woodworth A R, Rosen B A, et al. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Journal of Biological Chemistry, 1995, 270(29):17381-17385.
doi: 10.1074/jbc.270.29.17381 pmid: 7615543 |
[16] |
Jander G, Baerson S R, Hudak J A, et al. Ethylmethanesulfonate saturation mutagenesis in arabidopsis to determine frequency of herbicide resistance. Plant Physiology, 2003, 131(1):139-146.
doi: 10.1104/pp.102.010397 pmid: 12529522 |
[17] |
Brosnan J T, Vargas J J, Breeden G K, et al. A new amino acid substitution (Ala-205-Phe) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides. Planta, 2016, 243(1):149-159.
doi: 10.1007/s00425-015-2399-9 pmid: 26353912 |
[18] |
Kolkman J M, Slabaugh M B, Bruniard J M, et al. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theoretical and Applied Genetics, 2004, 109(6):1147-1159.
pmid: 15309298 |
[19] |
Yang Q, Deng W, Wang S, et al. Effects of resistance mutations of Pro197, Asp376 and Trp574 on the characteristics of acetohydroxyacid synthase (AHAS) isozymes. Pest Management Science, 2018, 74(8):1870-1879.
doi: 10.1002/ps.4889 pmid: 29424952 |
[20] |
Sala C A, Bulos M, Echarte M, et al. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theoretical and Applied Genetics, 2008, 118(1):105-112.
doi: 10.1007/s00122-008-0880-6 pmid: 18784913 |
[21] |
Yu Q, Han H, Vila-Aiub M M, et al. AHAS herbicide resistance endowing mutations: Effect on AHAS functionality and plant growth. Journal of Experimental Botany, 2010, 61(14):3925-3934.
doi: 10.1093/jxb/erq205 pmid: 20627897 |
[22] |
Yu Q, Han H, Powles S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Management Science, 2008, 64(12):1229-1236.
doi: 10.1002/ps.v64:12 |
[23] |
Uchino A, Ogata S, Kohara H, et al. Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biology and Management, 2007, 7(2):89-96.
doi: 10.1111/wbm.2007.7.issue-2 |
[24] |
Intanon S, Perez-Jones A, Hulting A G, et al. Multiple Pro 197 ALS substitutions endow resistance to ALS inhibitors within and among mayweed chamomile populations. Weed Science, 2011, 59(3):431-437.
doi: 10.1614/WS-D-10-00146.1 |
[25] |
Sala C A, Bulos M. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower. Theoretical and Applied Genetics, 2012, 124(2):355-364.
doi: 10.1007/s00122-011-1710-9 pmid: 21959907 |
[26] |
Gabriela B, Laura G, Altieri E, et al. Effect of Ahasl1-1 and Ahasl1-4alleles on herbicide resistance and its associated dominance in sunflower. Pest Management Science, 2019, 75(4):935-941.
doi: 10.1002/ps.5197 pmid: 30187639 |
[27] | 萨拉C A, 艾查特A M, 布罗斯M, 等.抗除草剂的向日葵植物、编码抗除草剂的乙酰羟酸合酶大亚基蛋白的多核苷酸和使用方法:200680032210.2. 2008-10-15. |
[28] |
Xiao P, Liu Y, Cao Y. Overexpression of G10-EPSPS in soybean provides high glyphosate tolerance. Journal of Integrative Agriculture, 2019, 18(8):1851-1858.
doi: 10.1016/S2095-3119(18)62124-0 |
[29] |
Janel L H, Riggins C W, Steckel L E, et al. The EPSPS Pro106Ser substitution solely accounts for glyphosate resistance in a goosegrass (Eleusine indica) population from Tennessee, United States. Journal of Integrative Agriculture, 2016, 15(6):1304-1312.
doi: 10.1016/S2095-3119(15)61220-5 |
[30] |
Patterson E L, Pettinga D J, Ravet K, et al. Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species. The Journal of Heredity, 2018, 109(2):117-125.
doi: 10.1093/jhered/esx087 |
[31] |
Vijay S, Luke E, Josh M, et al. First case of glyphosate resistance in weedy sunflower (Helianthus annuus). Pest Management Science, 2020, 76(11):3685-3692.
doi: 10.1002/ps.5917 pmid: 32419329 |
[32] |
Jin M, Chen L, Deng X W, et al. Development of herbicide resistance genes and their application in rice. The Crop Journal, 2022, 10(1):26-35.
doi: 10.1016/j.cj.2021.05.007 |
[33] |
Li J B, Peng Q, Han H P, et al. Glyphosate resistance in Tridax procumbens via a Novel EPSPS Thr-102-Ser substitution. Journal of Agricultural and Food Chemistry, 2018, 66(30):7880-7888.
doi: 10.1021/acs.jafc.8b01651 |
[34] |
Hasanuzzaman M, Nahar K, Alam M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14 (5):9643-9684.
doi: 10.3390/ijms14059643 pmid: 23644891 |
[35] |
Breccia G, Gil M, Vega T, et al. Contribution of non-target-site resistance in imidazolinone-resistant Imisun sunflower. Bragantia, 2017, 76(4):536-542.
doi: 10.1590/1678-4499.2016.336 |
[36] |
Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Management Science, 2013, 69(2):176-187.
doi: 10.1002/ps.3318 pmid: 22614948 |
[37] | Jugulam M, Shyam C. Non-Target-Site resistance to herbicides: Recent developments. Plants (Basel), 2019, 8(10):417. |
[38] |
Gaines T A, Duke S O, Morran S, et al. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 2020, 295(30):10307-10330.
doi: 10.1074/jbc.REV120.013572 pmid: 32430396 |
[39] |
Piasecki C, Yang Y, Benemann D P, et al. Transcriptomic analysis identifies new non-target site glyphosate-resistance genes in Conyza bonariensis. Plants, 2019, 8(6):157.
doi: 10.3390/plants8060157 |
[40] | Hagel J M, Facchini P J. Biochemistry and occurrence of O- demethylation in plant metabolism. Frontiers in Physiology, 2010, 1:1-14. |
[41] |
Yuan J S, Tranel P J, Stewart C N. Non-target-site herbicide resistance: A family business. Trends in Plant Science, 2007, 12 (1):6-13.
doi: 10.1016/j.tplants.2006.11.001 pmid: 17161644 |
[42] |
Dobrinka B, Remans T, Vassilev A, et al. Possible involvement of glutathione S-transferases in imazamox detoxification in an imidazolinone-resistant sunflower hybrid. Journal of Plant Physiology, 2018, 221:62-65.
doi: S0176-1617(17)30297-3 pmid: 29247888 |
[43] | Bruniard J M, Miller J F. Inheritance of imidazolinone herbicide resistance in sunflower. Helia, 2001, 35(24):11-16. |
[44] | Mercedes G, Tatiana V, Silvina F, et al. Characterization of non- target-site mechanisms in imidazolinone-resistant sunflower by RNA-seq. Helia (Novi Sad), 2018, 41(69):267-278. |
[45] |
Kaspar M, Grondona M, Leon A, et al. Selection of a sunflower line with multiple herbicide tolerance that is reversed by the P 450 inhibitor malathion. Weed Science, 2011, 59(2):232-237.
doi: 10.1614/WS-D-10-00120.1 |
[46] |
Tatiana V, Mercedes G, Gabriela M, et al. Stress response and detoxification mechanisms involved in non-target-site herbicide resistance in sunflower. Crop Science, 2020, 60(4):1809-1822.
doi: 10.1002/csc2.v60.4 |
[47] |
Choe E, Williams M M. Expression and comparison of sweet corn CYP81A9s in relation to nicosulfuron sensitivity. Pest Management Science, 2020, 76(9):3012-3019.
doi: 10.1002/ps.v76.9 |
[48] |
Shin K, Yuko Y, Rintaro S, et al. Identification of a cytochrome P 450 hydroxylase, CYP81E22, as a causative gene for the high sensitivity of soybean to herbicide bentazon. Theoretical and Applied Genetics, 2020, 133(7):2105-2115.
doi: 10.1007/s00122-020-03580-6 pmid: 32200415 |
[49] |
Gregory N T, Marina N, Jack C M, et al. The P450 gene CYP749A16 is required for tolerance to the sulfonylurea herbicide trifloxysulfuron sodium in cotton (Gossypium hirsutum L.). BMC Plant Biology, 2018, 18(1):186.
doi: 10.1186/s12870-018-1414-2 pmid: 30200872 |
[50] |
Dong H, Huang Y, Wang K. The development of herbicide resistance crop plants using CRISPR/Cas9-mediated gene editing. Genes, 2021, 12(6):912.
doi: 10.3390/genes12060912 |
[51] |
Sudianto E, Song B K, Neik T X, et al. Clearfield® rice: Its development, success, and key challenges on a global perspective. Crop Protection, 2013, 49:40-51.
doi: 10.1016/j.cropro.2013.02.013 |
[52] |
Miller J F, Al Khatib K,. Registration of two oilseed sunflower genetic stocks, SURES‐1 and SURES‐2 resistant to tribenuron herbicide. Crop Science, 2004, 44(3):1037-1038.
doi: 10.2135/cropsci2004.1037 |
[1] | 杜明, 王阿红, 冯旗, 方玉. 我国作物设计育种体系发展及挑战[J]. 作物杂志, 2024, (1): 17 |
[2] | 杜超, 李军, 王刚, 邬雪瑞, 任志远, 张俊峰, 包海柱, 温埃清. 河套灌区中度盐碱地高垄覆膜滴灌对向日葵生长及水分利用的影响[J]. 作物杂志, 2024, (1): 111116 |
[3] | 金玉, 郭新宇, 张颖, 李大壮, 王璟璐. 玉米叶片气孔表型鉴定及研究进展[J]. 作物杂志, 2023, (6): 110 |
[4] | 吴胜, 段玉, 张婷婷, 安昊, 张君, 梁俊梅, 张胜. 食葵干物质积累、转运和产量的关系以及对水氮互作的响应[J]. 作物杂志, 2023, (6): 243251 |
[5] | 李鹤鹏, 张匀华, 孟庆林, 马立功, 于洪涛, 李海燕, 李易初, 刘佳, 石凤梅, 杨帆, 刘亮. 向日葵盘腐型菌核病诱抗剂筛选及超敏蛋白应用技术研究[J]. 作物杂志, 2023, (6): 257260 |
[6] | 裴春玲, 谷勇哲, 付佳祺, 晁守伟, 卢倩, 邱丽娟. 黄淮海夏大豆在海南快速加代技术研究[J]. 作物杂志, 2023, (6): 3540 |
[7] | 凌一波, 王斌杰, 胡一民, 海那尔·毛地热合曼, 陈年来. 向日葵干物质转运及产量形成对密度与行距的响应[J]. 作物杂志, 2023, (5): 197203 |
[8] | 依兵, 刘金刚, 宋殿秀, 王德兴, 赵明珠, 刘晓宏, 孙恩玉, 崔良基. 干旱地区向日葵与谷子间作的土地生产力及种间竞争力的研究[J]. 作物杂志, 2023, (5): 219223 |
[9] | 朱孔艳, 韩升才, 赵榕, 温玉洁, 胡昊驰, 乔益民, 卢佳锋, 曹凯, 许政晗, 包海柱, 高聚林. 向日葵籽粒拮抗核盘菌的内生菌分离筛选及鉴定[J]. 作物杂志, 2023, (5): 280284 |
[10] | 曲海涛, 李忠南, 王越人, 马艺文, 相洋, 邬生辉, 谭倬, 王纯, 魏强, 罗瑶, 李光发. 玉米百粒重遗传育种效应研究[J]. 作物杂志, 2023, (5): 6670 |
[11] | 温胜慧, 杨俊伟, 王洋, 李公建, 翁建峰, 段灿星, 贾鑫, 王建军. 玉米抗真菌病害基因挖掘与分子育种利用研究进展[J]. 作物杂志, 2023, (3): 111 |
[12] | 赵云, 冯国郡, 胡相伟, 吾买尔江·库尔班, 李鹏兵, 李翠梅, 阿克博塔·木合亚提. 新疆喀什地区适栽抗除草剂复播谷子品种筛选初报[J]. 作物杂志, 2023, (3): 126133 |
[13] | 邵扬, 郭延平, 闵庚梅, 杨晓明. 不同功能除草剂对蚕豆生长和田间杂草的防治效果[J]. 作物杂志, 2023, (3): 254259 |
[14] | 杨世奇, 陈丽明, 周燕芝, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 杂草防除对双季直播优质晚籼稻产量和稻米品质的影响[J]. 作物杂志, 2023, (2): 121125 |
[15] | 李志华, 穆婷婷, 李爱军. 生育进程相近的谷子杂交种两系亲本的选育及其杂种优势分析[J]. 作物杂志, 2022, (6): 7581 |
|