作物杂志,2024, 第5期: 194–203 doi: 10.16035/j.issn.1001-7283.2024.05.028

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

增密减氮栽培对杂交籼稻稻米品质的影响

刘子琛(), 尚李岩, 叶佳雨, 盛添, 李瑞杰, 邓俊, 田小海, 张运波, 黄礼英()   

  1. 农业农村部长江中游作物绿色高效生产重点实验室(部省共建)/长江大学农学院,434025,湖北荆州
  • 收稿日期:2023-07-04 修回日期:2023-09-19 出版日期:2024-10-15 发布日期:2024-10-16
  • 通讯作者: 黄礼英,研究方向为水稻栽培生理,E-mail:lyhuang8901@126.com
  • 作者简介:刘子琛,研究方向为水稻栽培生理,E-mail:l3307185039@163.com
  • 基金资助:
    国家自然科学基金(32001467)

Effects of Dense Planting with Reduced Nitrogen Input Cultivation on the Grain Quality of Hybrid Indica Rice

Liu Zichen(), Shang Liyan, Ye Jiayu, Sheng Tian, Li Ruijie, Deng Jun, Tian Xiaohai, Zhang Yunbo, Huang Liying()   

  1. Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs / College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2023-07-04 Revised:2023-09-19 Online:2024-10-15 Published:2024-10-16

摘要:

以4个杂交籼稻品种(Y两优900、两优培九、珞优10号和川优6203)为材料,在0(N1)、90(N2)和180 kg/hm2 N(N3)3个氮肥及22.2(D1)和33.3株/m2(D2)2个种植密度处理下进行大田试验,以此研究增密减氮栽培对稻米品质的影响。结果表明,两优培九、珞优10号和川优6203在增密减氮栽培(N2D2)下的产量较正常氮正常密度(N3D1)处理分别增加10.0%、9.2%和7.6%,而Y两优900在2个处理间产量差异不显著。N2D2处理显著降低了稻米的加工品质,整精米率降低15.3%;但改善了外观品质,垩白度和垩白粒率分别降低26.9%和9.7%;同时还使直链淀粉和总蛋白含量分别降低6.2%和21.9%。此外,N2D2处理提高了稻米的峰值黏度、热浆黏度、最终黏度和崩解值,降低了消减值。综上,增密减氮栽培对水稻产量和品质的影响存在显著的品种间和年际间差异,整体上表现为在稳定产量的同时改善了稻米的外观品质,显著提高了稻米的蒸煮食味品质,但降低了稻米的加工和营养品质。因此,增密减氮栽培在一定程度上可以协同丰产和优质。

关键词: 氮肥, 种植密度, 稻米品质, 杂交籼稻, 产量

Abstract:

The study took four hybrid indica rice varieties (Y Liangyou 900, Liangyoupeijiu, Luoyou10, and Chuanyou 6203) as materials, and set three nitrogen fertilizer rate of 0 (N1), 90 (N2) and 180 kg/ha N (N3), and two planting density of 22.2 (D1) and 33.3 plants/m2 (D2) under field conditions to study the effects of dense planting with reduced nitrogen input practice on grain quality in rice. The results showed that the yield of Liangyoupeijiu, Luoyou10, and Chuanyou 6203 under dense planting with reduced nitrogen input practice (N2D2) increased by 10.0%, 9.2% and 7.6%, respectively, compared with that under normal nitrogen and normal density treatment (N3D1), while the yield of Y Liangyou 900 was not significantly different between the two treatments. Dense planting with reduced nitrogen input practice significantly decreased the milling quality, and the head rice rate reduced by 15.3%, while the appearance quality was improved in N2D2, and chalkiness degree and chalky grain percentage were reduced by 26.9% and 9.7%, respectively. At the same time, amylose content and total protein content were decreased by 6.2% and 21.9% in N2D2, compared with that in N3D1, respectively. In addition, dense planting with reduced nitrogen input practice increased the peak viscosity, hot viscosity, final viscosity and breakdown value, but decreased the setback. In conclusion, the effects of dense planting with reduced nitrogen input practice on rice yield and quality were significantly different between varieties and between years. On the whole, dense planting with reduced nitrogen input practice improved the appearance and cooking and eating quality of rice while increasing yield, but reduced the milling and nutritional quality. Therefore, to a certain extent, dense planting with reduced nitrogen input practice can improve synergistically yield and quality of rice.

Key words: Nitrogen fertilizer, Planting density, Rice quality, Hybrid indica rice, Yield

图1

2021和2022年供试品种生育期内日最低温、日最高温和太阳辐射

图2

2021和2022年不同氮肥和密度处理下4个杂交稻品种的产量 不同小写字母表示同一品种在不同处理间差异显著(P < 0.05),下同。

图3

2021和2022年不同氮肥和密度处理下4个杂交稻品种的糙米率、精米率和整精米率

图4

2021和2022年不同氮肥和密度处理下4个杂交稻品种的垩白粒率和垩白度

图5

2021和2022年不同氮肥和密度处理下4个杂交稻品种的直链淀粉含量

表1

2021和2022年不同氮肥和密度处理下4个杂交稻品种的各蛋白组分含量

品种
Variety
氮肥
Nitrogen
密度
Density
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
YLY900 N1 D1 0.30c 0.94c 0.22c 3.71d 0.34c 1.00c 0.21c 4.06e
D2 0.26d 0.92c 0.18d 3.58d 0.31d 0.97c 0.11d 3.91e
N2 D1 0.36b 1.00b 0.23b 4.61b 0.31d 1.13b 0.25b 4.75c
D2 0.32c 0.94c 0.21c 4.22c 0.39b 1.03c 0.36a 4.48d
N3 D1 0.40a 1.07a 0.26a 5.28a 0.33c 1.37a 0.35a 6.80a
D2 0.39a 1.04ab 0.24b 5.12a 0.41a 1.21b 0.24b 6.17b
LYPJ N1 D1 0.14bc 0.89de 0.19d 4.50d 0.14c 0.93de 0.25c 3.97e
D2 0.13c 0.87e 0.16e 4.17e 0.12d 0.88e 0.06e 4.03e
N2 D1 0.16b 0.98bc 0.20c 4.81c 0.18b 1.03c 0.27c 4.64c
D2 0.15b 0.94cd 0.18d 4.72c 0.15c 0.97cd 0.12d 4.36d
N3 D1 0.19a 1.15a 0.24a 6.26a 0.12d 1.31a 0.30b 7.88a
D2 0.18a 1.01b 0.22b 5.20b 0.22a 1.14b 0.32a 7.26b
LY10 N1 D1 0.19d 0.82c 0.18c 3.91c 0.24a 0.96c 0.17d 4.32d
D2 0.18d 0.80c 0.15d 3.73c 0.17c 0.89c 0.06f 4.06e
N2 D1 0.20bc 0.97b 0.19bc 4.74b 0.22b 1.07b 0.30a 4.74c
D2 0.20cd 0.85c 0.19bc 4.57b 0.21b 1.05b 0.22c 4.47d
N3 D1 0.23a 1.03a 0.22a 5.30a 0.16c 1.22a 0.25b 5.55a
D2 0.21b 0.98ab 0.20b 5.21a 0.24a 1.09b 0.13e 5.28b
CY6203 N1 D1 0.29d 0.98cd 0.21d 4.17d 0.37e 1.06d 0.27c 4.28c
D2 0.28d 0.96d 0.17e 3.84e 0.40d 0.99d 0.14e 4.17c
N2 D1 0.34b 1.03bc 0.26bc 4.65c 0.47a 1.30b 0.26c 4.75b
D2 0.32c 0.99bcd 0.25c 4.36d 0.34f 1.17c 0.32a 4.68b
N3 D1 0.35ab 1.28a 0.28a 5.19a 0.43c 1.42a 0.18d 6.02a
D2 0.37a 1.04b 0.27b 4.95b 0.45b 1.33b 0.29b 5.94a
方差分析Variance analysis
氮肥N 128.39** 46.50** 90.11** 198.88** 27.06** 65.58** 198.56** 404.52**
密度D 12.00** 18.12** 79.09** 22.31** 5.40* 13.34** 117.39** 17.72**
品种V 646.20** 15.75** 27.25** 40.67** 497.46** 42.07** 63.87** 14.47**
N×D 1.05ns 2.90ns 7.07** 0.67ns 91.27** 0.95ns 52.91** 2.03ns
N×V 9.08** 0.64ns 3.72* 2.10ns 4.41** 1.10ns 30.53** 23.93**
D×V 2.90ns 0.66ns 0.26ns 1.44ns 23.43** 0.03ns 32.97** 0.97ns
N×D×V 0.65ns 1.56ns 0.73ns 1.90ns 31.32** 0.26ns 28.00** 0.80ns

图6

2021年和2022年不同氮肥和密度处理下4个杂交稻品种的总蛋白含量

表2

2021年不同氮肥和密度处理下4个杂交稻品种的RVA谱特征值

品种Variety 氮肥Nitrogen 密度Density PV (cP) HV (cP) FV (cP) BKV (cP) SB (cP) GT (℃)
YLY900 N1 D1 3266bc 2206b 2788c 1060c -478e 88.03ab
D2 3788a 2261b 3592a 1526a -196c 85.08bc
N2 D1 3051d 2213b 3009b 838d -42a 84.08c
D2 3215c 2445a 3075b 770e -139b 82.93c
N3 D1 2618e 1904d 2026d 714f -592f 89.35a
D2 3289b 2069c 3051b 1220b -238d 82.13c
LYPJ N1 D1 2624a 1693c 3357b 931a 733c 87.23b
D2 2003e 1854b 2439d 149e 436d 87.48b
N2 D1 2086d 1994a 2348e 93f 262f 86.15b
D2 2511b 1677c 3444a 834b 934b 87.28b
N3 D1 2300c 1565d 3287c 735c 987a 87.75ab
D2 1966e 1609d 2303e 357d 336e 90.70a
LY10 N1 D1 2920b 2236a 3708b 684c 788b 86.42bc
D2 3287a 1937d 3648b 1350a 361d 90.12a
N2 D1 2899bc 2111b 4031a 787b 1133a 86.95bc
D2 2247e 2035c 2835d 212e 588c 84.82c
N3 D1 2841c 2125b 2817d 716c -24e 88.57ab
D2 2344d 1927d 2928c 416d 585c 87.78abc
CY6203 N1 D1 2159e 2117a 2130e 42f -29d 85.83c
D2 2401d 1939b 2575d 462e 174c 87.27bc
N2 D1 3181a 1568d 3101b 1613a -80e 90.95a
D2 2753b 1816c 2161e 936c -592f 88.25abc
N3 D1 2504c 1757c 2957c 747d 454b 89.60ab
D2 3138a 2146a 4005a 992b 867a 89.08ab
方差分析Analysis of variance
氮肥N 52.45** 31.12** 12.28** 3.69* 26.24** 1.27ns
密度D 4.39* 0.83ns 4.49* 4.72* 0.00ns 0.73ns
品种V 434.24** 132.12** 139.59** 797.61** 807.65** 4.40ns
N×D 17.54** 5.28* 65.15** 91.23** 90.75** 0.67ns
N×V 146.78** 28.91** 204.46** 334.79** 588.01** 0.88ns
D×V 69.36** 15.85** 140.87** 91.03** 50.29** 2.05ns
N×D×V 62.90** 9.12** 211.25** 370.00** 315.37** 0.93ns

表3

2022年不同氮肥和密度处理下4个杂交稻品种RVA谱特征值

品种Variety 氮肥Nitrogen 密度Density PV (cP) HV (cP) FV (cP) BKV (cP) SB (cP) GT (℃)
YLY900 N1 D1 3681b 2461bc 3508a 1220b -174b 83.84ab
D2 3893a 2584a 3499a 1309a -395d 82.03bc
N2 D1 3271d 2334d 3248c 938d -23a 80.08cd
D2 3601bc 2483b 3355b 1118c -246c 78.98d
N3 D1 3585c 2426bc 3415b 1159c -170b 85.10a
D2 3654bc 2391cd 3239c 1264ab -415e 78.22d
LYPJ N1 D1 2782b 2139b 3394a 643ab 612a 83.08b
D2 2936a 2258a 3404a 678a 468d 83.32b
N2 D1 2637d 2040c 3191b 596c 554b 82.05b
D2 2723bc 2105bc 3152b 618bc 429e 83.13b
N3 D1 2665cd 2085bc 3181b 580c 516c 83.57b
D2 2712bcd 2115bc 3133b 596c 421e 86.38a
LY10 N1 D1 3495b 2539a 3896a 956c 400c 82.30bc
D2 3716a 2369d 3828a 1347a 113e 85.83a
N2 D1 3050c 2377cd 3557c 674d 507b 83.48abc
D2 3482b 2454bc 3693b 1027b 211d 80.78c
N3 D1 3129c 2462ab 3702b 667d 573a 84.35ab
D2 3069c 2417bcd 3566c 652d 497b 83.60ab
CY6203 N1 D1 3399b 2377b 3255b 1022c -144d 81.75c
D2 3814a 2564a 3471a 1250a -343f 83.11bc
N2 D1 3120c 2240c 3158cd 880d 38b 86.62a
D2 3438b 2286c 3159c 1151b -279e 84.05abc
N3 D1 3114c 2246c 3076de 868d -38c 85.33ab
D2 2839d 1928d 3059e 910d 221a 83.84bc
方差分析Analysis of variance
氮肥N 95.64** 16.53** 44.90** 103.08** 447.57** 1.01ns
密度D 46.37** 0.72ns 0.01ns 133.46** 1567.96** 0.95ns
品种V 541.97** 185.41** 305.16** 1613.36** 4159.57** 4.48ns
N×D 20.97** 6.09** 4.04* 18.56** 229.85** 1.16ns
N×V 11.07** 4.22** 0.58ns 26.05** 327.02** 1.02ns
D×V 1.10ns 2.09ns 0.99ns 14.00** 74.59** 1.90ns
N×D×V 3.78** 3.16* 1.68ns 6.04** 99.02** 1.05ns
[1] Huang M, Zou Y B. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Research, 2018,224:22-27.
[2] 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35(9):1095-1103.
[3] 唐健, 唐闯, 郭保卫, 等. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020, 46(1):117-130.
[4] 金正勋, 秋太权, 孙艳丽, 等. 氮肥对稻米垩白及蒸煮食味品质特性的影响. 植物营养与肥料学报, 2001, 7(1):31-35.
[5] Chen Y, Wang M, Ouwerkerk P B F. Molecular and environmental factors determining grain quality in rice. Food and Energy Security, 2012, 1(2):111-132.
[6] 吴春赞, 叶定池, 林华, 等. 栽插密度对水稻产量及品质的影响. 中国农学通报, 2005(9):190-191,205.
[7] Zhou C C, Huang Y C, Jia B Y, et al. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy, 2018, 8(11):246.
[8] 徐春梅, 王丹英, 邵国胜, 等. 施氮量和栽插密度对超高产水稻中早22产量和品质的影响. 中国水稻科学, 2008, 22(5):507-512.
[9] Fu Y Q, Zhong X H, Zeng J H, et al. Improving grain yield,nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. Journal of Integrative Agriculture, 2021, 20(2):565-580.
[10] Chong H T, Jiang Z Y, Shang L Y, et al. Dense planting with reduced nitrogen input improves grain yield, protein quality, and resource use efficiency in hybrid rice. Journal of Plant Growth Regulation, 2023, 42(2):960-972.
[11] 国家质量监督检验检疫总局. 优质稻谷:GB/T 17891-2017. 北京: 中国标准出版社.
[12] 徐栋, 朱盈, 周磊, 等. 不同类型籼粳杂交稻产量和品质性状差异及其与灌浆结实期气候因素间的相关性. 作物学报, 2018, 44(10):1548-1559.
doi: 10.3724/SP.J.1006.2018.01548
[13] Huang L Y, Yang D S, Li X X, et al. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research, 2019,233:49-58.
[14] Zhong X H, Peng S B, Sanico A L, et al. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. Journal of Plant Nutrition, 2003, 26(6):1203-1222.
[15] Huang M, Zou Y B. Reducing environmental risk of nitrogen by popularizing mechanically dense transplanting for rice production in China. Journal of Integrative Agriculture, 2020, 19(9):2362-2366.
doi: 10.1016/S2095-3119(20)63155-0
[16] Zheng H B, Chen Y W, Chen Q M, et al. High-density planting with lower nitrogen application increased early rice production in a double-season rice system. Agronomy Journal, 2020, 112(1):205-214.
[17] Grigg B C, Siebenmorgen T J, Norman R J. Effects of nitrogen rate and harvest moisture content on physicochemical properties and milling yields of rice. Cereal Chemistry, 2016, 93(2):172-181.
[18] Leesawatwong M, Jamjod S, Kuo J, et al. Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chemistry, 2005, 82(5):588-593.
[19] Kumar V, Mahajan G, Sharma N. Influence of rate and time of nitrogen application on the yield and quality characteristics of basmati rice (Oryza sativa L.). Ecology,Environment and Conservation, 2014,2014:182.
[20] Rosario A R D, Briones V P, Vidal A J, et al. Composition and endosperm structure of developing and mature rice kernel. Cereal Chemistry, 1968,45:225-235.
[21] Chen Y L, Liu Y, Dong S Q, et al. Response of rice yield and grain quality to combined nitrogen application rate and planting density in saline area. Agriculture, 2022, 12(11):1788.
[22] Lanning S B, Siebenmorgen T J, Counce P A, et al. Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality. Field Crops Research, 2011, 124(1):132-136.
[23] Zhou L J, Liang S S, Ponce K, et al. Factors affecting head rice yield and chalkiness in indica rice. Field Crops Research, 2015,172:1-10.
[24] Dou Z, Tang S, Li G H, et al. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Science, 2017, 57(4):2183-2192.
[25] Chen S, Yin M, Zheng X, et al. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agronomy Journal, 2019, 111(3):1229-1238.
[26] Tsukaguchi T, Iida Y. Effects of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants (Oryza sativa L.). Plant Production Science, 2008, 11(2):203-210.
[27] Hori K, Suzuki K, Iijima K, et al. Variation in cooking and eating quality traits in Japanese rice germplasm accessions. Breeding Science, 2016, 66(2):309-318.
doi: 10.1270/jsbbs.66.309 pmid: 27162502
[28] Bhat F M, Riar C S. Physicochemical, cooking and textural characteristics of grains of different rice (Oryza sativa L.) cultivars of temperate region of India and their interrelationships. Journal of Texture Studies, 2017, 48(2):160-170.
[29] 胡雅杰, 吴培, 邢志鹏, 等. 机插方式和密度对水稻主要品质性状及淀粉RVA谱特征的影响. 扬州大学学报(农业与生命科学版), 2017, 38(3):73-82.
[30] Zhang J Y, Kong H C, Ban X F, et al. Rice noodle quality is structurally driven by the synergistic effect between amylose chain length and amylopectin unit-chain ratio. Carbohydrate Polymers, 2022,295:119834.
[31] 朱相成, 张振平, 张俊, 等. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响. 应用生态学报, 2016, 27(2):453-461.
[32] Li X X, Huang L Y, Peng S B, et al. Inter-annual climate variability constrains rice genetic improvement in China. Food and Energy Security, 2021, 10(4):e299.
[33] Chen H, Chen D, He L H, et al. Correlation of taste values with chemical compositions and Rapid Visco Analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chemistry, 2021,349:129176.
[34] Ning H F, Liu Z H, Wang Q S, et al. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. Journal of Cereal Science, 2009, 50(1):49-55.
[35] 隋炯明, 李欣, 严松, 等. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38(4):657-663.
[36] 叶全宝, 张洪程, 李华, 等. 施氮水平和栽插密度对粳稻淀粉RVA谱特性的影响. 作物学报, 2005, 31(1):124-130.
[1] 郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文. 铁肥施用对绿豆产量和籽粒含铁量的影响[J]. 作物杂志, 2024, (5): 105–109
[2] 孙光旭, 刘莹, 王欣怡, 孔德庸, 韦娜, 邢力文, 郭伟. 群体密度和黄腐酸对芸豆产量及籽粒营养品质的影响[J]. 作物杂志, 2024, (5): 110–118
[3] 王珊珊, 杨宇蕾, 刘飞虎, 杨阳, 汤开磊, 李涛, 牛龙江, 杜光辉. 多效唑喷施浓度和时期对工业大麻花叶产量和大麻二酚含量的影响[J]. 作物杂志, 2024, (5): 119–124
[4] 黄渝岚, 刘文君, 李艳英, 周佳, 周灵芝, 劳承英, 李素平, 申章佑, 韦本辉. 木薯田间作不同密度南瓜对作物产量、经济效益及土地生产力的影响[J]. 作物杂志, 2024, (5): 125–130
[5] 田琴琴, 卓乐, 陈娜娜, 郑德超, 吴小京, 喻鹏, 陈平平, 易镇邪. 钙镁水滑石施用方式对双季稻糙米镉含量与土壤特性的影响[J]. 作物杂志, 2024, (5): 131–139
[6] 穆建国, 王鹏, 柳延涛, 崔佳伟, 陈燕芳, 万素梅, 陈贵红. 不同收获期对食葵商品性及产量的影响[J]. 作物杂志, 2024, (5): 146–151
[7] 李洪亮, 孙玉友, 魏才强, 刘丹, 解忠, 程杜娟, 曲金玲, 宋泽, 孟祥海, 赵云彤, 时新瑞. 控灌施肥对寒地粳稻生长及产量和品质的影响[J]. 作物杂志, 2024, (5): 152–158
[8] 曹少娜, 吴利晓, 关耀兵, 王克雄. 不同生物菌肥种类及用量对青花菜产量和品质的影响[J]. 作物杂志, 2024, (5): 159–166
[9] 李俊志, 王晓东, 窦爽, 辛宗绪, 吴宏生, 周宇飞, 肖继兵. 低氮条件下L-色氨酸对高粱生长发育的影响[J]. 作物杂志, 2024, (5): 175–180
[10] 周琦, 吴芳, 王振龙, 徐志鹏, 邓超超, 施志国, 张靖, 宿翠翠, 余亚琳, 周彦芳. 氮肥与生物炭互作对设施番茄生长及根结线虫病害的影响[J]. 作物杂志, 2024, (5): 212–219
[11] 路佳慧, 王爽, 李云, 郭振清, 王健, 韩玉翠, 林小虎. 减量施氮对春小麦不同器官氮肥利用及籽粒品质的影响[J]. 作物杂志, 2024, (5): 220–227
[12] 周雪, 韩芳, 苏乐平, 李星星, 牛宏伟, 郭玮, 袁宏安. 种植密度对春谷农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 241–246
[13] 董明宇, 郑宏峰, 朱哲. 不同胚乳表型对高粱农艺性状及产量的影响[J]. 作物杂志, 2024, (5): 29–34
[14] 何嘉辉, 李艳锋, 严天泽, 张选文, 秦鹏, 郭进有, 王凯, 刘雄伦, 杨远柱. 氮肥减施对超级稻玮两优8612产量及品质的影响[J]. 作物杂志, 2024, (5): 73–79
[15] 王一帆, 林涛, 王冬, 王新翠, 张昊, 刘海军, 陈茂光, 汤秋香. 生物降解地膜和灌溉定额对棉田土壤水热特性的影响[J]. 作物杂志, 2024, (5): 86–95
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!