作物杂志,2025, 第3期: 133–140 doi: 10.16035/j.issn.1001-7283.2025.03.018

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应

侯晓敏1(), 申惠波1(), 董守坤2, 闫锋1, 董扬1, 赵富阳1, 李清泉1, 左月桃3   

  1. 1黑龙江省农业科学院齐齐哈尔分院,161006,黑龙江齐齐哈尔
    2东北农业大学农学院,150030,黑龙江哈尔滨
    3青岛滕润翔检测评价有限公司,266109,山东青岛
  • 收稿日期:2023-09-06 修回日期:2024-05-22 出版日期:2025-06-15 发布日期:2025-06-03
  • 通讯作者: 申惠波,主要从事旱作农业研究,E-mail:shenhuibo@163.com
  • 作者简介:侯晓敏,主要从事杂粮作物遗传育种及栽培研究,E-mail:houxiaomin2021@163.com
  • 基金资助:
    黑龙江省农业科学院创新工程资助项目(CX23GG11)

Physiological Effects of Mepiquat Chloride on Alleviating Drought Stress in Soybean Seedling Leaves

Hou Xiaomin1(), Shen Huibo1(), Dong Shoukun2, Yan Feng1, Dong Yang1, Zhao Fuyang1, Li Qingquan1, Zuo Yuetao3   

  1. 1Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, Heilongjiang, China
    2College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    3Qingdao Tengrunxiang Detection and Evaluation Co., Ltd., Qingdao 266109, Shandong, China
  • Received:2023-09-06 Revised:2024-05-22 Online:2025-06-15 Published:2025-06-03

摘要:

为探究甲哌鎓(DPC)对干旱胁迫下大豆幼苗的缓解作用,以大豆品种黑农44(HN44)为试验材料,叶面喷施不同浓度DPC(0、100、300、500、700 mg/L),用15% PEG-6000模拟干旱胁迫。结果表明,与干旱胁迫处理(S0)相比,喷施DPC处理提高了干旱胁迫下大豆叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性,提高了相对含水量(RWC)、脯氨酸、可溶性糖、生长素(IAA)、赤霉素(GA)、玉米素(ZA)含量和PSⅡ光化学量子效率(Fv/Fm)、PSⅡ潜在光化学效率(Fv/Fo)、表观电子传递速率(ETR)及非光化学猝灭系数(NPQ),而丙二醛(MDA)和脱落酸(ABA)含量显著下降。ABA含量随DPC浓度的增加呈先降后升的趋势,IAA在S700处理、GA和ZA在S500处理时含量最高。在第9天,与S0处理相比,S300处理的SOD、POD、CAT和APX活性分别提高了14.47%、67.60%、111.03%和83.35%。Fv/FmFv/Fo和ETR均在S300处理下达到最大值,与S0处理相比,分别上升了8.30%、19.70%和32.30%。NPQ在S300处理下达到最小值,与S0处理相比下降了20.80%。适宜浓度的DPC可以通过提高植株抗氧化酶活性、提高渗透调节物质含量、抑制膜脂氧化、增加内源激素含量等方式缓解干旱胁迫对大豆生长发育的影响。

关键词: 大豆, DPC, 干旱胁迫, 内源激素, 抗氧化酶

Abstract:

In order to explore the alleviation effect of mepiquat chloride (DPC) on soybean seedlings under drought stress, soybean Heinong 44 (HN44) was used as the experimental material. Different concentrations of DPC (0, 100, 300, 500, 700 mg/L) were sprayed on the leaves, and 15% PEG-6000 was used to simulate drought stress. The results showed that the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), relative water content (RWC), proline, soluble sugar, contents of auxin (IAA), gibberellin (GA), zeatin (ZA), PSII photochemical quantum yield (Fv/Fm), PSII potential photochemical efficiency (Fv/Fo), apparent electron transport rate (ETR) and non-photochemical quenching coefficient (NPQ) in soybean leaves under drought stress were increased by spraying DPC compared with those under drought stress (S0). Drought significantly reduced the contents of malondialdehyde (MDA) and abscisic acid (ABA), but the content of ABA decreased first and then increased with the increase of DPC concentration. The content of IAA was the highest in S700 treatment, and the contents of GA and ZA were the highest in S500 treatment. On the 9th day, compared with S0 treatment, the activities of SOD, POD, CAT and APX in S300 treatment increased by 14.47%, 67.60%, 111.03% and 83.35%, respectively. Fv/Fm, Fv/Fo and ETR reached the maximum under S300 treatment, which increased by 8.30%, 19.70% and 32.30%, respectively, compared with S0 treatment. NPQ reached the minimum under S300 treatment, which decreased by 20.80% compared with S0 treatment. Appropriate concentration of DPC can alleviate the effects of drought stress on soybean growth and development by increasing plant antioxidant enzyme activity and osmotic regulatory substance content, inhibiting membrane lipid oxidation, and increasing endogenous hormone content.

Key words: Soybean, DPC, Drought stress, Endogenous hormone, Antioxidant enzyme

表1

干旱胁迫下DPC对大豆叶片SOD活性的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 1.29±0.02b 1.32±0.01d 1.34±0.04d 1.42±0.04e
S0 1.27±0.04b 1.39±0.01c 1.52±0.08c 1.51±0.03d
S100 1.33±0.04ab 1.46±0.02b 1.69±0.02a 1.84±0.06b
S300 1.38±0.01a 1.54±0.01a 1.74±0.06a 1.96±0.04a
S500 1.35±0.03ab 1.48±0.03ab 1.72±0.03a 1.95±0.04a
S700 1.32±0.02ab 1.45±0.02b 1.60±0.02b 1.71±0.03c

表2

干旱胁迫下DPC对大豆叶片POD活性的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 428.37±16.91c 491.66±36.91c 767.64±24.23e 511.62±21.29d
S0 362.70±39.17d 551.91±13.99c 871.27±19.81d 496.76±24.57d
S100 605.87±12.42bc 744.84±58.33b 1143.24±38.37b 696.95±19.56b
S300 666.86±15.43a 994.67±99.07a 1460.22±57.36a 827.06±3.66a
S500 656.79±76.33b 795.72±32.57b 1384.09±36.77a 754.03±36.46ab
S700 567.71±29.60bc 634.97±13.76bc 988.26±61.22c 575.17±27.76c

表3

干旱胁迫下DPC对大豆叶片CAT活性的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 78.57±7.07d 139.28±10.59c 226.64±27.50c 262.46±18.13a
S0 46.35±0.60c 191.01±16.27bc 307.66±12.93bc 246.45±16.17ab
S100 107.53±8.19b 289.92±15.82a 373.58±29.17b 176.21±6.14cd
S300 141.99±4.06a 344.17±24.46a 649.25±17.95a 244.17±20.41ab
S500 138.71±0.93a 294.13±9.42a 590.19±43.67a 209.54±8.99bc
S700 86.34±5.76c 219.80±27.97b 353.98±22.00b 150.27±10.63d

表4

干旱胁迫下DPC对大豆叶片APX活性的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 5.16±0.18b 5.59±0.30c 5.70±0.23d 6.04±0.44b
S0 4.00±0.20c 6.27±0.32c 7.81±0.25c 4.58±0.33c
S100 5.34±0.26b 8.23±0.17b 8.99±0.16c 7.36±0.12a
S300 6.77±0.33a 10.33±0.75a 14.32±0.84a 7.65±0.20a
S500 5.80±0.45b 8.77±0.32b 12.65±0.24b 7.62±0.12a
S700 5.28±0.23b 6.83±0.36c 8.69±0.15c 6.75±0.39ab

表5

干旱胁迫下DPC对大豆叶片水分含量的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 69.25±5.24a 63.61±8.10a 65.69±0.85a 60.61±3.12a
S0 65.00±4.22a 55.58±2.27b 49.52±5.38b 45.29±2.55b
S100 68.86±1.58a 62.18±1.79a 58.01±6.10ab 57.28±4.53a
S300 65.93±3.01a 56.77±2.01b 54.57±2.96ab 51.60±2.51ab
S500 68.49±3.01a 61.37±2.75a 56.17±4.88ab 52.30±6.60ab
S700 65.40±2.43a 55.38±3.45b 51.50±2.07b 50.91±3.97ab

表6

干旱胁迫下DPC对大豆叶片MDA含量的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 8.38±0.57a 8.42±0.53d 15.27±1.51c 20.33±0.84c
S0 10.54±0.39a 30.79±0.46a 34.18±1.10a 41.57±1.56a
S100 9.56±1.99a 19.42±1.27bc 32.17±1.24ab 34.02±1.65ab
S300 8.53±0.46a 16.68±1.43c 22.86±1.55b 27.53±1.54b
S500 8.76±0.38a 18.23±0.41c 32.16±1.50ab 32.69±2.96ab
S700 10.26±1.03a 22.62±1.89b 34.07±3.13a 35.19±2.60ab

表7

干旱胁迫下DPC对大豆叶片脯氨酸含量的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 13.52±0.17f 15.41±0.61d 18.57±0.68d 25.71±0.83c
S0 15.32±0.10e 28.17±1.63cd 41.99±0.10c 57.89±2.79b
S100 17.97±0.51c 35.92±3.29bc 66.29±0.51ab 89.45±2.53a
S300 23.11±0.10a 50.47±4.79ab 79.56±0.70a 92.59±4.38a
S500 20.31±0.02b 49.09±2.48a 77.06±0.17ab 91.18±3.47a
S700 16.29±0.50d 25.52±3.74cd 62.20±0.50b 89.16±3.24a

表8

干旱胁迫下DPC对大豆叶片可溶性糖含量的影响

处理
Treatment
取样时期Sampling time
3 d 6 d 9 d 12 d
CK 1.29±0.02b 1.32±0.01d 1.34±0.04d 1.42±0.04e
S0 1.27±0.04b 1.39±0.01c 1.52±0.08c 1.51±0.03d
S100 1.33±0.04ab 1.46±0.02b 1.69±0.02a 1.84±0.06b
S300 1.38±0.01a 1.54±0.01a 1.74±0.06a 1.96±0.04a
S500 1.35±0.03ab 1.48±0.03ab 1.72±0.03a 1.95±0.04a
S700 1.32±0.02ab 1.45±0.02b 1.60±0.02b 1.71±0.03c

图1

干旱胁迫下DPC对大豆叶片ABA、IAA、ZA和GA含量的影响 不同字母代表处理间达到5%显著差异水平,下同。

图2

干旱胁迫下DPC对大豆叶片叶绿素荧光参数的影响

[1] Vianna G R, Cunha N B, Rech E L. Soybean seed protein storage vacuoles for expression of recombinant molecules. Current Opinion in Plant Biology, 2023,71:102331.
[2] 王兴荣, 张彦军, 陈光荣, 等. 干旱胁迫对大豆光合、产量及品质的影响. 干旱地区农业研究, 2023, 41(2):150-159.
[3] 秦彬, 张明聪, 何松榆, 等. 褪黑素浸种对大豆种子萌发过程中干旱胁迫的缓解效应. 干旱地区农业研究, 2020, 38(2):192-198.
[4] Wang X Y, Wu Z H, Zhou Q, et al. Physiological response of soybean plants to water deficit. Frontiers in Plant Science, 2021,12:809692.
[5] 金祎婷, 刘文辉, 刘凯强, 等. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响. 草业学报, 2022, 31(6):112-126.
doi: 10.11686/cyxb2021154
[6] Dai A. Erratum: Increasing drought under global warming in observations and models. Nature Climate Change, 2013, 3(2):171.
[7] Eini M R, Javadi S, Delavar M, et al. Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed. Catena, 2020,195:104801.
[8] Yang H C, Feng X M, Wang H X, et al. Long time-series variation of crop yield under drought stress and drought vulnerability curves in Songnen Plain, Northeast China. Ecological Indicators, 2023,154:110624.
[9] 葛欣, 任慧林, 陈训琦, 等. BR与DA-6复配S3307拌种对苗期干旱胁迫下大豆生长和产量的影响. 黑龙江农业科学, 2022 (12):38-43,48.
[10] 杜昕, 李博, 毛鲁枭, 等. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响. 作物杂志, 2022(1):174-178.
[11] 张秀玲, 孙颖, 孟岩, 等. 干旱胁迫下外源水杨酸对野生大豆生理特性的影响. 中国野生植物资源, 2022, 41(1):9-12,19.
[12] 范希峰, 田晓莉, 李召虎, 等. 应用ICP-MS研究甲哌鎓对转Bt基因抗虫棉棉籽中无机元素含量的影响. 光谱学与光谱分析, 2009, 29(4):1119-1122.
[13] Wang L, Mu C, Du M W, et al. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Science, 2014,225:15-23.
[14] 王玺越. 甲哌鎓对大豆苗期干旱胁迫的调控效应. 哈尔滨:东北农业大学, 2023.
[15] 罗立津, 徐福乐, 洪淑珠, 等. 甲哌鎓对甜椒幼苗抗寒性的诱导作用研究. 农药学学报, 2010, 12(2):142-148.
[16] 张特, 赵强, 李广维. 缩节胺对棉花生长发育影响研究进展. 江苏农业科学, 2021, 49(18):14-18.
[17] 赵文超, 杜明伟, 黎芳, 等. 应用缩节胺(DPC)调控棉花株型的定位定量效应研究. 作物学报, 2019,45:1059-1069.
[18] 石峰, 李海江, 孙孝贵, 等. 基于缩节胺调控的免打顶棉花群体结构及产量分析. 新疆农业科学, 2021, 58(11):1990-1999.
doi: 10.6048/j.issn.1001-4330.2021.11.004
[19] 陈少瑜, 郎南军, 李吉跃, 等. 干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯氨酸含量的变化. 西部林业科学, 2004, 33(3):30-33,41.
[20] 韩爱民, 杨江山, 张立梅, 等. 外源γ-氨基丁酸对葡萄光合色素、内源激素和品质的影响. 甘肃农业大学学报, 2023, 58(2):83-92.
[21] Zhang X, Feng T Q, Chen Z, et al. Exogenous hormones affect Bt protein content of two Bt cotton cultivars. Agronomy Journal, 2019, 111(6):3076-3083.
doi: 10.2134/agronj2019.04.0273
[22] 韩静, 张志勇, 汤菊香, 等. 缩节安与CaCl2复配剂对高羊茅幼苗生长的影响. 湖北农业科学, 2009, 48(3):657-659.
[23] 杜召海, 汪宝卿, 解备涛, 等. 模拟干旱条件下植物生长调节剂对夏薯苗期根系生理生化特性的影响. 西北农业学报, 2014, 23(10):97-104.
[24] Lü X P, Gao H J, Zhang L, et al. Dynamic responses of Haloxylon ammodendron to various degrees of simulated drought stress. Plant Physiology and Biochemistry, 2019,139:121-131.
[25] 尉欣荣, 张智伟, 周雨, 等. 褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用. 草地学报, 2020, 28(5):1337-1345.
doi: 10.11733/j.issn.1007-0435.2020.05.019
[26] 魏晓东, 陈国祥, 施大伟, 等. 干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响. 生态学报, 2012, 32(23):7492-7500.
[27] 张明聪, 何松榆, 秦彬, 等. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响. 作物学报, 2021, 47(9):1791-1805.
doi: 10.3724/SP.J.1006.2021.04154
[28] 巩擎柱, 吕金印, 徐炳成, 等. 水分胁迫和种植方式对小麦叶绿素荧光参数及水分利用效率的影响. 西北农林科技大学学报(自然科学版), 2006, 34(5):83-88.
[29] 秦江南, 郭永翠, 王博, 等. 两种植物生长延缓剂对主干形核桃光合荧光日变化的影响. 南方农业学报, 2018, 49(12):2410-2418.
[30] 马宗斌, 李伶俐, 谢德意, 等. 施肥与缩节胺配合对麦后直播夏棉光合特性及产量的影响. 中国生态农业学报, 2006, 14(4):94-97.
[31] 李蒙, 范高领, 张燕, 等. 外源2,4-表油菜素内酯(EBR)对弱光胁迫下黄心菜生长和碳水化合物代谢的影响. 南方农业学报, 2019, 50(5):1028-1034.
[32] 李冬, 申洪涛, 王艳芳, 等. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响. 草业学报, 2021, 30(1):130-139.
doi: 10.11686/cyxb2020070
[33] Wang X Y, Zhou Q, Wang X, et al. Corrigendum: Mepiquat chloride inhibits soybean groath but improves drought resistance. Frontiers in Plant Science, 2022,13:1068683.
[1] 吕荣臻, 买合木提·肉孜, 张勇, 买合木提·热木图拉, 牙尔买买提·阿力木, 张建成, 于天一. 外源激素及抑制剂对酸化土壤花生激素含量及生长发育的影响[J]. 作物杂志, 2025, (3): 218–224
[2] 梁辉, 章建新, 薛丽华, 贾珂珂. 水氮后移条件下滴灌量对新农豆2号根系生长及产量的影响[J]. 作物杂志, 2025, (3): 233–240
[3] 任永福, 李嘉怡, 陈国鹏, 蒲甜, 陈虹, 王小春. 不同栽培管理模式对带状套作玉米产量与效率的影响[J]. 作物杂志, 2025, (2): 101–108
[4] 邸娜, 郑喜清, 王靖, 韩海军, 李娜. 向日葵应对列当寄生的生理响应差异性研究[J]. 作物杂志, 2025, (2): 123–127
[5] 侯晓敏, 闫锋, 董扬, 赵富阳, 李清泉, 季生栋, 刘悦, 兰英. 外源甜菜碱对干旱胁迫下谷子萌发及幼苗生理特性的影响[J]. 作物杂志, 2025, (2): 228–233
[6] 杨如萍, 贾贞, 韦瑛, 魏野畴, 王立明, 陈光荣, 张国宏, 宋雯雯. 甘肃不同地理来源大豆品种生育期性状与气象因子及农艺性状的关系[J]. 作物杂志, 2025, (1): 123–132
[7] 安东升, 赵宝山, 刘洋, 严程明, 孔冉, 黄文甫, 苏俊波. 甘蔗新品种的光合表型与叶片表征对干旱胁迫及复水的响应[J]. 作物杂志, 2025, (1): 208–213
[8] 庞敏昡, 王瀚, 李志涛, 史宁帆, 蒲转芳, 张锋, 姚攀锋, 毕真真, 白江平, 孙超. 不同水分处理下施用立收谷对马铃薯品质的影响[J]. 作物杂志, 2024, (6): 132–139
[9] 张旭丽, 王瑞军, 郗小倩, 冯学金, 李洪. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响[J]. 作物杂志, 2024, (5): 204–211
[10] 张薇, 王琦, 闫鹏, 许艳丽, 严洪冬, 李桂英, 陈迪苏, 焦晓燕, 卢霖, 董志强. 聚糠萘合剂对东北地区高粱不同密度群体叶片衰老及产量的影响[J]. 作物杂志, 2024, (5): 96–104
[11] 杜杰, 冯宇, 夏清, 智慧, 王文霞. 外源油菜素内酯缓解谷子穗分化期干旱胁迫的机理研究[J]. 作物杂志, 2024, (4): 144–151
[12] 张子怡, 王学虎, 苑莹, 沈志峰. 腐植酸悬浮剂对NaCl胁迫下小麦种子萌发和幼苗生长的影响[J]. 作物杂志, 2024, (4): 263–268
[13] 薛鑫雨, 詹文博, 陈新宜, 周瑞祥, 王永霞, 薛瑞丽, 李华, 汪月霞, 李艳. 灌浆期干旱胁迫对不同小麦品种的生理性状与根系生长的影响[J]. 作物杂志, 2024, (3): 192–200
[14] 卿晨, 刘正学, 李彦杰. 转录组测序分析干旱胁迫下复合微生物菌肥对玉米幼苗抗旱性的影响[J]. 作物杂志, 2024, (3): 32–39
[15] 李多, 王晨, 张明聪, 曹亮, 金喜军, 张玉先, 王孟雪. 大豆苗期水分亏缺对土壤酶活性及微生物多样性的影响[J]. 作物杂志, 2024, (2): 148–157
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!