作物杂志,2026, 第1期: 217–224 doi: 10.16035/j.issn.1001-7283.2026.01.027

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

不同降水年型下春小麦产量对降水、施氮及秸秆覆盖的响应模拟

叶晓娟1(), 刘强2()   

  1. 1甘肃农业大学理学院,730070,甘肃兰州
    2甘肃农业大学信息科学技术学院,730070,甘肃兰州
  • 收稿日期:2024-10-09 修回日期:2024-12-10 出版日期:2026-02-15 发布日期:2026-02-10
  • 通讯作者: 刘强,主要从事农业作物模型研究,E-mail:liuq@gsau.edu.cn
  • 作者简介:叶晓娟,主要从事农业信息化研究,E-mail:hi_yxjam@163.com
  • 基金资助:
    国家自然科学基金(32360438);甘肃省拔尖领军人才项目(GSBJLJ-2023-09);甘肃省重点研究发展计划(22YF7FA116)

Simulation of Spring Wheat Yield Response to Precipitation, Nitrogen Application, and Straw Mulching under Different Precipitation Year Types

Ye Xiaojuan1(), Liu Qiang2()   

  1. 1College of Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-10-09 Revised:2024-12-10 Online:2026-02-15 Published:2026-02-10

摘要: 为探究不同降水年型下降水量、氮肥与秸秆覆盖耦合变化对旱地春小麦产量的影响机制,利用2013-2018年免耕及免耕秸秆覆盖下的春小麦产量、土壤及气象数据校验APSIM模型。结合1970-2022年历史数据驱动校验后的模型,模拟5×5×5组降水变化量(±20%、±10%、0%)、施氮量(0.0、52.5、105.0、157.5和210.0 kg/hm2)和秸秆覆盖量(0、1125、2250、3375和4500 kg/hm2)组合下的产量,分析不同单因素下各年型产量变异系数,并采用二次正交多项式逐步回归、单因素分析和交互效应研究各因素对产量的影响。结果表明,APSIM模型模拟效果良好,2种耕作方式下实测与模拟产量R2均大于0.8,NRMSE均小于10%,ME均大于0.8。欠水年、平水年和丰水年下,三因素单独及交互作用均正向影响产量,效应强度为降水变化量>施氮量>秸秆覆盖量。在当年自然降水基础上,各年型最优产量及耕作措施为:欠水年实现最优产量2203.65 kg/hm2,需增加20%降水量、施用153.13 kg/hm2氮肥、覆盖4500 kg/hm2秸秆;平水年实现最优产量2838.77 kg/hm2,需增加20%降水量、施用170.76 kg/hm2氮肥、覆盖4500 kg/hm2秸秆;丰水年实现最优产量3447.11 kg/hm2,需增加20%降水量、施用188.58 kg/hm2氮肥、覆盖4500 kg/hm2秸秆。综上,在模拟试验设置范围内,免耕覆盖下增加降水量、施氮量和秸秆覆盖量均可提升春小麦模拟产量,但影响程度因降水年型而异,当地春小麦宜按年型制定水肥覆盖方案以实现高产与稳产。

关键词: APSIM, 春小麦, 降水, 氮肥, 秸秆覆盖, 产量

Abstract:

To investigate the mechanism of the coupled effects of precipitation, nitrogen (N) fertilizer, and straw mulching on dryland spring wheat yield under different precipitation year types, the APSIM model was calibrated using spring wheat yield, soil, and meteorological data under no-tillage and no-tillage with straw mulching from 2013 to 2018. Combined with historical data from 1970 to 2022 to drive the calibrated model, yields were simulated under 5×5×5 combinations of precipitation changes (±20%, ±10% and 0%), nitrogen application rates (0.0, 52.5, 105.0, 157.5, and 210.0 kg/ha), and straw mulching rates (0, 1125, 2250, 3375, and 4500 kg/ha). The coefficient of variation of yield under single-factor was analyzed for each year type, and quadratic orthogonal polynomial stepwise regression, single-factor analysis, and interaction effects were employed to study the impacts of various factors on yield. The results showed that the APSIM model performed well, with R2 > 0.8, NRMSE < 10%, and ME > 0.8 for both tillage practices. In dry, normal, and wet years, the individual and interactive effects of the three factors all positively influenced yield, with the order of effect intensity being: precipitation change > nitrogen application rate > straw mulching rate. Based on the natural precipitation of the current year, the optimal yields and cultivation measures for each year type were as follows: in dry years, an optimal yield of 2203.65 kg/ha was achieved by increasing precipitation by 20%, applying 153.13 kg/ha of nitrogen, and mulching with 4500 kg/ha of straw; in normal years, an optimal yield of 2838.77 kg/ha required a 20% increase in precipitation, 170.76 kg/ha of nitrogen, and 4500 kg/ha of straw mulching; in wet years, an optimal yield of 3447.11 kg/ha required a 20% increase in precipitation, 188.58 kg/ha of nitrogen, and 4500 kg/ha of straw mulching. In conclusion, within the simulated experimental range, increasing precipitation, nitrogen application rate, and straw mulching amount under no-tillage conditions can enhance the simulated yield of spring wheat, but the degree of impact varies with precipitation year types. For local spring wheat, water, fertilizer, and mulching strategies should be formulated according to the specific year type to achieve high and stable yields.

Key words: APSIM, Spring wheat, Precipitation, Nitrogen fertilizer, Straw mulching, Yield

表1

小麦品种“定西35号”作物参数

参数
Parameter
数值
Value
春化敏感因子Vernalization sensitivity factors 1.0
光周期敏感因子Photoperiod sensitivity factors 2.0
单位茎秆干物质的籽粒数
Grains per stem dry matter unit (grain/g)
25.0
潜在的籽粒灌浆速度Potential grain filling rate (g/d·grain) 0.001
灌浆期到成熟期的积温
Thermal time from filling to maturity (℃·d)
580
最大灌浆速率Maximum grain filling rate (mg/d·grain) 2.30
分蘖重Weight of tillers (g/tiller) 1.22
株高Plant height (mm) 1000
最大谷粒重Maximum grain weight (g) 0.045

表2

降水变化量、施氮量和秸秆覆盖量的模拟试验设计

降水变化量
Precipitation
variability (%)
无量纲编码
Dimensionless
code
施氮量
Nitrogen application
rate (kg/hm2)
无量纲编码
Dimensionless
code
秸秆覆盖量
Straw mulching
amount (kg/hm2)
无量纲编码
Dimensionless
code
-20 -1.40855 0.0 -1.40855 0 -1.40855
-10 -0.70427 52.5 -0.70427 1125 -0.70427
0 0.00000 105.0 0.00000 2250 0.00000
10 0.70427 157.5 0.70427 3375 0.70427
20 1.40855 210.0 1.40855 4500 1.40855

表3

土壤理化参数

土层深度
Depth of soil
layer (cm)
风干含水率
Air-dried moisture
(mm/mm)
容重
Bulk density
(g/cm3)
饱和含水量
Saturated
moisture (mm/mm)
铵态氮
Ammonium
nitrogen (mg/kg)
硝态氮
Nitrate nitrogen
(mg/kg)
0~5 0.013 1.290 0.463 6.300 19.100
5~10 0.013 1.226 0.487 5.200 15.200
10~30 0.046 1.325 0.450 5.100 23.100
30~50 0.071 1.200 0.497 4.900 16.600
50~80 0.087 1.140 0.520 4.600 16.800
80~110 0.103 1.140 0.520 4.800 18.200
110~140 0.107 1.250 0.480 4.800 16.400
140~170 0.115 1.120 0.529 5.800 13.700
170~200 0.127 1.110 0.531 4.100 15.400

表4

不同降水年型

年型
Model year
平均降水量
Average precipitation (mm)
年份数量
Number of years
年份
Year
丰水年
Wet year
259.03
17
1977、1978、1979、1984、1986、1990、1991、1993、1998、1999、2003、2005、2012、2013、2018、2019、2020
平水年
Normal year
200.15
23
1970、1972、1973、1980、1981、1983、1985、1987、1988、1989、1992、1994、1996、2002、2004、2006、2007、2010、2014、2015、2016、2021、2022
欠水年
Dry year
136.40
13
1971、1974、1975、1976、1982、1995、1997、2000、2001、2008、2009、2011、2017

图1

小麦产量模拟值和实测值的线性拟合

表5

不同降水年型对春小麦模拟产量影响的显著性分析

降水年型
Precipitation year type
春小麦产量
Spring wheat yield (kg/hm2)
F
欠水年Dry year 1383.24±448.18c 77.05
平水年Normal year 1782.94±536.71b
丰水年Wet year 2199.54±567.41a

图2

不同降水年型单因素作用下产量的变异系数

表6

不同降水年型的二次正交回归方程

年型Year 回归方程Regression equation R 2 - F P
欠水年Dry year Y欠水年=0.3581+0.7265X1+0.2208X2+0.0922X3+0.0254X12-0.4554X22+0.2485X1X2+0.0398X1X3+0.0123X2X3 0.794 60.63 <0.001
平水年Normal year Y平水年=0.3721+0.7088X1+0.3366X2+0.0772X3+0.0345X12-0.4407X22+0.2937X1X2+0.0387X1X3+0.0192X2X3 0.849 88.41 <0.001
丰水年Wet year Y丰水年=0.4045+0.7000X1+0.4523X2+0.0687X3+0.0611X12-0.4251X22+0.3352X1X2+0.0281X1X3+0.0205X2X3 0.932 214.87 <0.001

图3

不同降水年型春小麦产量单因素方程及其效应

[1] 姜大膀, 王娜. IPCC AR6报告解读:水循环变化. 气候变化研究进展, 2021, 17(6):699-704.
[2] 姜大膀, 王晓欣. 对IPCC第六次评估报告中有关干旱变化的解读. 大气科学学报, 2021, 44(5):650-653.
[3] 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读:未来的全球气候——基于情景的预估和近期信息气候变化研究进展, 2021, 17(6):652-663.
[4] Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. Plant Cell Reports, 2024, 43(1):27.
doi: 10.1007/s00299-023-03083-w pmid: 38163826
[5] 刘玉洁, 陈巧敏, 葛全胜, 等. 气候变化背景下1981-2010中国小麦物候变化时空分异. 中国科学:地球科学, 2018, 48(7):888-898.
[6] 周景博, 刘亮. 未来气候变化对中国小麦产量影响的差异性研究——基于Meta回归分析的定量综述. 中国农业气象, 2018, 39(3):141-151.
[7] 周丽涛, 孙爽, 郭尔静, 等. 干旱条件下APSIM模型修正及华北冬小麦产量模拟效果. 农业工程学报, 2023, 39(6):92-102.
[8] 张婷婷, 范子晗, 常乐乐, 等. 西北地区小麦生产环境风险时空特征. 干旱地区农业研究, 2023, 41(2):248-256.
[9] 刘淑军, 李冬初, 黄晶, 等. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力. 中国农业科学, 2023, 56 (16):3140-3155.
doi: 10.3864/j.issn.0578-1752.2023.16.008
[10] Shao Y H, Xie Y X, Wang C Y, et al. Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. European Journal of Agronomy, 2016, 81(10):37-45.
doi: 10.1016/j.eja.2016.08.014
[11] 张统帅, 闫丽娟, 李广, 等. 免耕和秸秆覆盖对旱作区土壤氮素、水分和春小麦产量的影响. 浙江农业学报, 2020, 32(8):1329-1341.
doi: 10.3969/j.issn.1004-1524.2020.08.01
[12] 王佳, 冯晓淼, 芈书贞, 等. 模拟降雨量变化与CO2浓度升高对小麦光合特性和碳氮特征的影响. 水土保持研究, 2020, 27(1):328-334,339.
[13] 李枫, 周杨, 尹鹏, 等. 长江中游不同品质类型小麦产量形成及氮素吸收利用对氮肥的响应. 麦类作物学报, 2024, 44(3):370-377
[14] 茹晓雅, 李广, 陈国鹏, 等. 不同降水年型下水氮调控对小麦产量及生物量的影响. 作物学报, 2019, 45(11):1725-1734.
doi: 10.3724/SP.J.1006.2019.91008
[15] 崔振坤, 于振文, 石玉, 等. 水氮运筹对小麦光合物质生产和产量的影响. 应用生态学报, 2024, 35(6):1564-1572.
doi: 10.13287/j.1001-9332.202406.017
[16] 王永亮, 胥子航, 李申, 等. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响. 作物学报, 2024, 50(5):1312-1324.
doi: 10.3724/SP.J.1006.2024.33025
[17] 王文杰, 马建涛, 柴雨葳, 等. 不同覆盖方式对旱地春小麦土壤水热及生长的影响. 麦类作物学报, 2023, 43(9):1206-1214.
[18] Yin H J, Zhao W Q, Li T, et al. Balancing straw returning and chemical fertilizers in China: role of straw nutrient resources. Renewable and Sustainable Energy Reviews, 2018, 81(1):2695-2702.
doi: 10.1016/j.rser.2017.06.076
[19] 薛志伟, 杨春玲. 秸秆还田条件下氮肥用量对冬小麦生长发育及产量的影响. 作物研究, 2021, 35(3):200-204.
[20] 张静, 马嵩科, 张冬霞, 等. 秸秆还田配施氮肥对旱地小麦生理生化特性及产量的影响. 江苏农业科学, 2023, 51(23):61-69.
[21] 王伟伟, 聂志刚. 降水和温度变化下秸秆覆盖对旱地春小麦产量及其构成因素的影响. 作物研究, 2023, 37(4):335-342.
[22] 李广, 黄高宝, William B, 等. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性. 生态学报, 2009, 29(5):2655-2663.
[23] 杨蕊, 王小燕, 刘科. 湖北省小麦潜在产量时空异质性特征及驱动因子分析. 中国生态农业学报, 2024, 32(4):616-626.
[24] Zeleke K. Simulating agronomic adaptation strategies to mitigate the impacts of climate change on wheat yield in south-eastern Australia. Agronomy, 2021, 11(2):337.
doi: 10.3390/agronomy11020337
[25] 李晓州, 郝明德, 赵晶, 等. 不同降水年型下长期施肥的小麦产量效应. 应用生态学报, 2018, 29(10):3237-3244.
[26] 刘强, 高雪慧, 王钧. 不同降水年型下大气CO2浓度和温度对旱地春小麦产量的响应模拟. 干旱地区农业研究, 2023, 41 (2):230-237,265.
[27] 尹嘉德, 侯慧芝, 张绪成, 等. 基于APSIM模型分析不同降水年型下施氮深度对旱地小麦的产量效应. 水土保持学报, 2022, 36(1):247-254.
[28] 任新庄, 闫丽娟, 李广, 等. 陇中旱地春小麦产量对降水与温度变化的响应模拟. 干旱地区农业研究, 2018, 36(3):125-129,155.
[29] 冯仰强, 聂志刚, 王钧, 等. 基于APSIM模型研究不同降水年型下降水变化对旱地小麦产量的影响. 作物研究, 2021, 35(2):108-111,140.
[30] 董志强, 张丽华, 吕丽华, 等. 不同灌溉方式对冬小麦光合速率及产量的影响. 干旱地区农业研究, 2015, 33(6):1-7.
[31] 高艳梅, 孙敏, 高志强, 等. 不同降水年型旱地小麦覆盖对产量及水分利用效率的影响. 中国农业科学, 2015, 48(18):3589-3599.
doi: 10.3864/j.issn.0578-1752.2015.18.003
[32] García-López J, Lorite I J, García-Ruiz R, et al. Yield response of sunflower to irrigation and fertilization under semi-arid conditions. Agricultural Water Management, 2016, 176(14):151-162.
doi: 10.1016/j.agwat.2016.05.020
[33] 周冬冬, 张军, 李福建, 等. 稻秸还田与耕作方式对小麦产量形成及籽粒品质的影响. 麦类作物学报, 2022, 42(10):1273-1282.
[34] 马晓明, 李丹, 雷佳, 等. 不同降水年型下耕作方式结合覆盖对旱地土壤物理性质和马铃薯产量的影响. 应用生态学报, 2024, 35(2):447-456.
doi: 10.13287/j.1001-9332.202402.012
[35] 王培如, 钟融, 孙敏, 等. 不同降水年型施氮量对冬小麦水氮资源利用效率的调控. 植物营养与肥料学报, 2022, 28(8):1430-1443.
[36] 张森昱, 冯雨露, 马建涛, 等. 不同降水年型下秸秆带状覆盖对西北旱地马铃薯品质和产量的影响. 干旱地区农业研究, 2023, 41(5):207-216.
[37] 常磊, 韩凡香, 柴雨葳, 等. 秸秆带状覆盖对半干旱雨养区冬小麦耗水特征和产量的影响. 应用生态学报, 2019, 30(12):4150-4158.
[38] 王新媛, 赵思达, 郑险峰, 等. 秸秆还田和氮肥用量对冬小麦产量和氮素利用的影响. 中国农业科学, 2021, 54(23):5043-5053.
doi: 10.3864/j.issn.0578-1752.2021.23.010
[39] 陈松鹤, 向晓玲, 雷芳, 等. 秸秆覆盖配施氮肥根际土真菌群落及其与小麦产量的关系. 生态学报, 2022, 42(21):8751-8761.
[40] 杨慧敏, 王涛, 窦瑛霞, 等. 不同降水年型地膜覆盖及秸秆覆盖提高小麦产量和氮素利用的效应. 植物营养与肥料学报, 2021, 27(11):1905-1914.
[1] 周文丽, 郝淼艺, 张仁和. 高密度种植下氮肥对玉米根系生长及氮代谢的影响[J]. 作物杂志, 2026, (1): 125–132
[2] 马小明, 齐翔鲲, 谭雪, 史孟豫, 王玉凤, 付健, 杨克军. 免耕秸秆覆盖对半干旱区土壤团聚体稳定性和玉米产量的影响[J]. 作物杂志, 2026, (1): 152–159
[3] 谢富欣, 江晓林, 李成焕, 张文菁, 王飞雪, 胡卫丽, 梅鸿献, 何革命, 刘焱. 芝麻叶菜采摘时期对主要经济产量性状的影响及综合效益分析[J]. 作物杂志, 2026, (1): 160–166
[4] 施锘, 朱宏强, 杨梦璇, 周艳宾, 代惠娟, 吕鹏辉, 刘波, 王圣丰, 穆文坡, 杜宇. 不同微生物菌肥对烤烟生长发育、产量及品质的影响[J]. 作物杂志, 2026, (1): 189–196
[5] 张乐, 韩云飞, 杜二小, 李保成, 伞薪潼, 刘新雨, 王艳莉, 赵沛义, 任永峰. 有机培肥措施对马铃薯光合特性、养分含量及产量的影响[J]. 作物杂志, 2026, (1): 197–207
[6] 徐浩, 魏全全, 谭洪伟, 芶久兰, 冉雪松, 张萌, 宋南伶, 柳玲玲, 顾小凤, 吕锡斌. 酒糟有机无机复混肥对酒用高粱产量、品质、养分吸收及利用的影响[J]. 作物杂志, 2026, (1): 208–216
[7] 桑瑞娟, 董春阳, 张红妹, 何云, 孙浩, 刘伯帅, 朱晓艳, 马森, 李德锋. 不同生育期刈割对豫北小黑麦草产量、品质和青贮发酵质量的影响[J]. 作物杂志, 2026, (1): 225–230
[8] 杨文高, 袁文珏, 李兆光, 和桂青, 和琼姬, 王蕊, 李燕, 叶磊, 侯志江. 播期对滇西北冬播藜麦农艺性状和产量的影响[J]. 作物杂志, 2026, (1): 257–265
[9] 李青欣, 金秀良, 宋晓, 张珂珂, 郭腾飞, 黄绍敏, 岳克, 丁世杰, 黄明, 李友军. 有机肥部分替代氮肥对豫东冬小麦生长及土壤特性的影响[J]. 作物杂志, 2025, (6): 121–131
[10] 高文瑞, 孙艳军, 韩冰, 张晓青, 王显生, 郑子松. 外源有机硒对设施樱桃番茄产量及果实品质的影响[J]. 作物杂志, 2025, (6): 140–147
[11] 兰秀, 梁振华, 杨海霞, 李恒锐, 阮丽霞, 韦婉羚, 陈会鲜, 何洪良, 黄若兰, 赵春慧, 汤丹峰. 甘蔗―凉粉草间作对土壤理化性质及作物产量的影响[J]. 作物杂志, 2025, (6): 156–163
[12] 秦娜娜, 黄淋华, 陈莹, 王胜谋, 谢勇, 缪凯, 李万明, 戚兰. 叶面喷施丙酰芸苔素内酯对夏大豆光合作用、农艺性状和产量的影响[J]. 作物杂志, 2025, (6): 164–171
[13] 王舒琦, 李建波, 刘志萍, 马宇, 渠佳慧, 巴图, 徐寿军. 不同栽培模式下大麦产量与蛋白质形成的生理机制研究[J]. 作物杂志, 2025, (6): 172–180
[14] 颜小文, 梁俊超, 曾攀, 周红英, 王郅琪, 乐美旺, 孙建. 迟播对秋芝麻主要农艺性状及产量的影响[J]. 作物杂志, 2025, (6): 189–194
[15] 张艾英, 赵媛, 刘敏, 薛红桃, 王国梁, 王瑞, 郭二虎. 不同收获时间和收获方式下谷子产量与品质的响应[J]. 作物杂志, 2025, (6): 195–202
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!